Math, asked by abumasud83, 11 months ago

AB and cd are the smallest and the longest sides of a equal ABCD. Show that angle B is greater then angle D​

Attachments:

Answers

Answered by AbhijithPrakash
5

Solution:

Given:

In quadrilateral ABCD,

AB is the smallest side.         ....(1)

CD is the longest sides.        ....(2)

To Prove:

\angle B>\angle D

Construction:

Join B and D.

Mark the angles as shown in the figure.

Proof:

In △ABD,

AD > AB        (From(1))

\therefore \angle 5 > \angle 6        \boxed{\text{(Angle opposite to the longer side is greater)}}

In △CBD,

CD > BC        (From(2))

\therefore \angle 7 > \angle 8        \boxed{\text{(Angle opposite to the longer side is greater)}}

Adding equations

\angle 5 + \angle 7 > \angle 6 + \angle 8\\\implies \angle B > \angle D

Hence Proved.

Attachments:
Similar questions