Math, asked by Twisha909099, 4 months ago

AB and CD are two parallel chords of a circle whose Centre is o such that AB=30cm AO=OC=17cm OM perpendicular AB and ON perpendicular CD and distance between AB and CD is 23cm.find the length of chord CD​

Answers

Answered by Anonymous
13

Step-by-step explanation:

 \blue{ \bf{ \underline{QUESTION} : -  }}

AB and CD are two parallel chords of a circle whose Centre is o such that AB=30cm AO=OC=17cm OM perpendicular AB and ON perpendicular CD and distance between AB and CD is 23cm.find the length of chord CD

_________________________________

 \boxed{ \huge{ \bold{ Given}}}

  • AB = 30 cm

  • AO = 17 cm

  • OC = 17 cm

 {\boxed{\huge{\bold{ to \: find}}}}

  • Length of Chord CD

 \star{ \pink {\underline{ \underline{Solution : - }}}}

We Know that,

AM = 1/2 AB

 \bold{ \sf{AM =  \frac{1}{ \cancel{2}}{ \times { \cancel{30}}}}}

AM = 15 cm

 \huge{ \red{ \sf{ \underline{let}}}}

OM = x

AND,

ON = 23 - x

____________

(OM)  \sf{ \bold{x =  \sqrt{ {AO}^{2} -  {AM}^{2}  }}}

 \sf{ \bold{x =  \sqrt{ {17}^{2} -  {15}^{2}  }}}

 \sf{ \bold{  = \sqrt{284 - 225}}}

 \sf{ \bold{ =  \sqrt{64}  = 8}}

OM = 8 cm

Puting X value in ON ➔

 \bold{ \sf{ON = 23 - x}}

ON = 23 - 8 = 15 cm

━━━━━━━━

 \sf{ \bold{ CN =  \sqrt{ {OC}^{2} -  {ON}^{2}  }}}

 \bold{ \sf{CN =  \sqrt{ {17}^{2} -  {15}^{2}  }}}

 \sf{ \bold{CN =  \sqrt{64}  = 8cm}}

━━━━━━━━

∴ CD = 2 × CN

= 2 × 8 = 16 cm

CD = 16 cm

_________________________________

Attachments:
Similar questions