Math, asked by aroramuskan687, 11 months ago

ab+bc+ca=71 and a+b+c=15 find a^2 + b^2 + c^2

Answers

Answered by aryankd36
6

GIVEN:

ab+bc+ca=71

a+b+c=15

Then,

 {a }^{2}  +  {b}^{2}  +  {c}^{2}  =

we know,

 {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca)

Then,

 {a}^{2}  +  {b}^{2}  +  {c }^{2}  =  {(a + b + c) }^{2}  - 2(ab + bc + ca)

=(15)^2-2(71)

=225-142

=083

HOPE THIS WILL HELP YOU

Answered by Anonymous
1

hay!!

question

if \: a + b + c = 15 \: and \: ab + bc + ca = 71 \: then \: find \: the \: value \: of \: a {}^{2} b {}^{2} c {}^{2}

given

a + b + c = 15

ab + bc + ca = 71

to find

a {}^{2}+ b {}^{2}+ c {}^{2}

answer

083

formulas used

a {}^{2}+ b {}^{2} +c {}^{2}=a {}^{2}+ b {}^{2} +c {}^{2}+2(ab+bc+ca)

{\sf{\red{\underline{\Large{Explanation}}}}}

formula

=>(a+b+c)²=a²+b²+c²+2(ab + bc + ac)

putting the values

=>(a+b+c)²=a²+b²+c²+2(ab + bc + ac)

=>(15)²=a²+b²+c²+2(71)

=>225 =a²+b²+c²+142

=>225-142=a²+b²+c²

=>083. answer.

hope it's helps you

Similar questions