Math, asked by koushiksamanta280720, 1 year ago

AB+BC+CA=96,ABC=144,A2+B2+C2=169 ,2 means sqare, so A,B,C=?

Answers

Answered by suchindraraut17
1

A=12,B=4,C=3

Step-by-step explanation:

It is given that,

AB+BC+CA=96,

ABC=144,

\bold {A^2+B^2+C^2=169}

We know that,

(A+B+C)^2 = A^2+B^2+C^2+2(AB+BC+CA)

(A+B+C)^2=169+2(96)

(A+B+C)^2 = 169+192

(A+B+C)^2= 361

Taking Square Root on both sides,

(A+B+C) = 19

Since,ABC\ or\ A\times B\times C = 144 = 12\times 12 = 12\times 4\times 3

On comparison,

A=12,B=4,C=3

Hence,A=12,B=4,C=3

Answered by pinquancaro
1

A=12,B=4,C=3

Step-by-step explanation:

Given :

AB+BC+CA=96 .....(1)

ABC=144.......(2)

A^2+B^2+C^2=169 ......(3)

Using the algebraic identity,

(A+B+C)^2 = A^2+B^2+C^2+2(AB+BC+CA)

Substitute the values,

(A+B+C)^2=169+2(96)

(A+B+C)^2 = 169+192

(A+B+C)^2= 361

Square Root both sides,

(A+B+C) = \sqrt{361}

A+B+C=19

We have given that, A\times B\times C = 144

A\times B\times C = 12\times 4\times 3

As sum of 12+4+3=19

On comparison,

A=12,B=4,C=3

#Learn more

If a + b + c = 14 and a2 + b2 +c2 = 96 then (ab + bc + ca) =?

https://brainly.in/question/5192111

Similar questions