AB, CD and EF are three lines intersecting at the same point.
(I) Find x, if y = 45° and z = 90°.
(II) Find a, if x = 3a, y = 5x and z = 6x.
Answers
Answered by
16
Answer:
Solution:
AB, CD and EF are intersecting each other at o.
And ∠DOF = x°, ∠AOC = y°
and ∠BOE = z°
But ∠DOB = ∠AOC = y°
(Vertically opposite angles)
Similarly, ∠COE = ∠DOF = x°
And ∠AOF = ∠BOE = z°
∵ CD is a straight line
∴ ∠COE + ∠BOE + ∠DOB = 180°
⇒ x° + z° + y° = 180°
⇒ x° + y° + z° = 180°
(i) If y = 45° and z = 90°, then
⇒ x° + 45° + 90° = 180°
⇒ x° + 135° = 180°
∴ x° = 180° - 135° = 45°
(ii) If x = 3a, y = 5x, z = 6x,
Then x + y + z = 180°
⇒ x + 5x + 6x = 180° ⇒ 12x = 180°
⇒ x = 180°/12 = 15°
But x = 3a
∴ 3a = 15° ⇒ a = 15°/3 = 5°
Hence a = 5°
Similar questions