Math, asked by kroxy, 1 month ago

AB||CD
angle APQ = 60° and angle PRD = 125°
find the value of X
pls answer ​

Attachments:

Answers

Answered by naziyaparveenbtech
2

Answer:

Ans:60°

Apq:60° alternative angles

please give me brainlist

Answered by XxitzKing02xX
2

x \: = \: 60^{\circ}

GIVEN :

[•

\sf AB \parallel CD[/tex]

• </p><p>\sf \angle APQ = 60^{\circ}

• </p><p>\sf \angle PRD = 137^{\circ}

TO FIND :

The values of x

SOLUTION :

From the given figure,

R is a point angle. So,

\angle R = 180^{\circ}

→ </p><p>\angle QRP \: + \: \angle PRD \: = \: 180^{\circ}

→ </p><p>\angle QRP \: = \: 180^{\circ} \: - \: 137^{\circ}

→ </p><p>\angle QRP \: = \: 43^{\circ}

In </p><p>\triangle PQR,

→ </p><p>x \: + \: y \: + \: 43^{\circ} \: = \: 180^{\circ}

→ </p><p>x \: + \: y \: = \: 180^{\circ} \: - \: 43^{\circ}

→ </p><p>x \: + \: y \: = \: 137^{\circ}

\therefore AB \parallel CD, \angle APQ \: and \: \angle PQR \: are \: alternate \: angles.

Now, </p><p>\angle APQ \: = \: \angle PQR

\therefore \sf {\boxed {x \: = \: 60^{\circ}}}

Similar questions