Math, asked by Anonymous, 10 months ago

ab||cd . prove ∆abn ~cod and ab=20,DC =12,ao=25, find co​

Attachments:

Answers

Answered by Abhishek474241
2

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • AB//CD
  • AB=20
  • CD=12
  • BO=25

{\sf{\green{\underline{\large{To\:find}}}}}

  • CO?
  • ∆ABO ~ ∆COD

{\sf{\pink{\underline{\Large{Explanation}}}}}

Diagram

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(8.6,3){\large{A}}\put(7.7,0.9){\large{B}}\put(9.5,0.7){\sf{\large{Base}}}\put(11.1,0.9){\large{C}}\put(8,1){\line(1,0){3}}\put(11,1){\line(1,2){1}}\put(9,3){\line(3,0){3}}\put(7.7,2){\large{$\sf\:side$}}\put(8,1){\line(1,2){1}}\put(12.1,3){\large{D}}\put(8,1){\line(2,1){4}}\put(11,1){\line(-1,1){2}}\end{picture}

Solution

Here

AB//CD

DCO=OAB ((alternate interior)

OBA= BOC (alternate interior)

∆ABN ~ ∆COD (By AA Similarity)

  • If two ∆s are similar than their sides are proportional to each other

∆ABN ~ ∆COD

  • From this we conclude that

\tt\rightarrow\dfrac{CO}{BO}=\dfrac{OD}{OA}=\dfrac{CD}{AB}

utting the values

\tt\rightarrow\dfrac{CO}{BO}=\dfrac{OD}{OA}=\dfrac{CD}{AB}

\tt\rightarrow\dfrac{CO}{BO}=\dfrac{CD}{AB}

\tt\rightarrow\dfrac{CO}{25}=\dfrac{12}{20}

=>CO= (12 ×25) / 20

=>CO=15

Answered by Anonymous
6

Step-by-step explanation:

hey

why u post unnecessary questions again and again

Similar questions