Math, asked by dynamo261205, 7 months ago

AB is a chord of a circle, with centre O, such that AB = 16 cm and radius of the circle is 10 cm. Tangents at A and B intersect each other at P. Find the length of PA.

Answers

Answered by gurj57364953
13

\sf\large\red{\underline{\underline{Question?}}}

AB is a chord of a circle, with centre O, such that AB = 16 cm and radius of the circle is 10 cm. Tangents at A and B intersect each other at P. Find the length of PA.

\sf\large\</u><u>b</u><u>l</u><u>u</u><u>e</u><u>{\underline{\underline{</u><u>Solu</u><u>tion</u><u>!</u><u>!</u><u>}}}

\bold{\large{\underline{\fcolorbox{black}{</u><u>white</u><u>}{</u><u>Given</u><u>:</u><u>}}}}

 \textsf { \small {\underline {\:\pink { </u><u>AB</u><u> </u><u>is</u><u> </u><u>a</u><u> </u><u>chord</u><u> </u><u>of</u><u> </u><u>Cirlce</u><u>.</u><u> }} \: }}

\bold{\large{\underline{\fcolorbox{black}{white}{</u><u>To</u><u> </u><u>Find</u><u>:</u><u>}}}}

 \textsf { \small {\underline {\:\pink { The length of PA = ? }} \: }}

\bold{\large{\underline{\fcolorbox{black}{</u><u>pink</u><u>}{</u><u>NOW</u><u>,</u><u>}}}}

</u><u>{</u><u> </u><u>OP</u><u> </u><u>}</u><u> bisects {AB}

AL = BL = 8 cm

\bold{\large{\underline{\fcolorbox{black}{</u><u>pink</u><u>}{</u><u>THEN</u><u>,</u><u>}}}}

OL = ( 10^2 - 8^2)

OL = 36

OL = 6 cm

\bold{\large{\underline{\fcolorbox{black}{</u><u>pink</u><u>}{</u><u>NOW</u><u>,</u><u>}}}}

Tangent is perpendicular to the radius through the point of contact.

AOL + PAL = 90°

PAL + APL = 90°

( Because sum of angles in APL is 180° )

∠PLA = OLA = 90 ( Each )

APL = OLA = 90° ( Proved )

APL and OAL are similar triangles

=> PA/OA = AL/OL

( Corresponding Sides are proportional ).

=> PA/10 = 8/6

=> PA =( 8 × 10 )/6

=> PA = 80/6

Or PA = 40/3

\bold{\large{\underline{\fcolorbox{black}{</u><u>pink</u><u>}{</u><u>THEREFO</u><u>RE</u><u>,</u><u>}}}}

 \textsf { \large {\underline {\:\pink {The length of PA = 40/3 cm. }} \: }}

Attachments:
Answered by divij46
2

Tangent is perpendicular to the radius through the point of contact.

∠AOL + ∠PAL = 90°

∠PAL + ∠APL = 90°

( Because sum of angles in ∆APL is 180° )

∠PLA = ∠OLA = 90 ( Each )

∠APL = ∠OLA = 90° ( Proved )

∆APL and ∆OAL are similar triangles

=> PA/OA = AL/OL

( Corresponding Sides are proportional ).

=> PA/10 = 8/6

=> PA =( 8 × 10 )/6

=> PA = 80/6

Or PA = 40/3

THEREFORE,

The length of PA = 40/3 cm

Similar questions