Math, asked by abhiahuja4664, 1 year ago

AB is a chord of length 9.6cm of a circle with centre O and radius 6 cm. If the tangents at A and B intersect at point P then find the length PA.

Answers

Answered by Abhipal
1
Hope it will help you.
Attachments:
Answered by VelvetBlush
6

OP is the perpendicular Bisector of chord AB

\therefore \sf{AR=BR=\frac{1}{2}AB}

\longrightarrow\sf{\frac{1}{2}=9.6=4.8cm}

\sf{In\:right\:∆ARO,we\:have}

\longrightarrow\sf\red{OR =  \sqrt{ {or}^{2}  -  {AR}^{2} }}

\longrightarrow\sf\red{ \sqrt{ {6}^{2}  -  {(4.8)}^{2} }}

\longrightarrow \sf\red{\sqrt{10.8 \times 1.2}}

\longrightarrow \sf\red{\sqrt{12.96}}

\longrightarrow\sf\red{3.6cm}

\sf\purple{∆ARP~∆ORA}

\therefore \sf\blue{\frac{PA}{AR}=\frac{OA}{OR}}

Hence, \sf\blue{PA=\frac{OA}{OQ}×AR}

\sf{\frac{6×4.8}{3.6}=8cm}

Similar questions