AB is a diameter of a circle with centre O.
CB is a tangent to the circle at B. AC
intersects the circle at G. If the radius of
the circle is 6 cm and AG = 8 cm, then
the length of BC is:
केन्द्र 0 वाले वृत्त का एक व्यास AB है। बिन्दु B पर,
वृत्त पर CB एक स्पर्श रेखा है। AC वृत्त को G बिन्दु
पर काटता है। यदि वृत्त की त्रिज्या 6 सेमी. और AG =
8 सेमी. है, तो BC की लंबाई हैं:
(A) 245 cm (B) 6-6 cm
___(C) 216 cm (D)615 cm
11:11
Answers
Answered by
6
BC = 6√5 cm AB is a diameter of a circle with centre O. CB is a tangent to the circle at BAC intersects the circle at G. If the radius of the circle is 6 cm and AG = 8 cm
Step-by-step explanation:
AC² = AB² + BC²
=> AC² = 12² + BC²
BG² = AB² - AG²
=> BG² = 12² - 8²
=> BG² = 80
BG² + GC² = BC²
80 + GC² = BC²
AC² = 12² + BC²
=> (AG + GC)² = 12² + 80 + GC²
=> ( 8 + GC)² = 144 + 80 + GC²
=> 64 + GC² + 16GC = 224 + GC²
=> 16GC = 160
=> GC = 10
80 + GC² = BC²
=> 80 + 10² = BC²
=> 180 = BC²
=> BC = 6√5
Learn more:
Let PQR be a right triangle in which PQ = 3 cm, QR = 4 cm and Q ...
https://brainly.in/question/12875209
Equation of the circle which is such that the lengths of the tangents ...
https://brainly.in/question/13068835
Similar questions