Math, asked by kukkuthakku2005, 6 months ago

AB is a diameter of a circle with centre O, where A and B are (6, 2) and (4, -4) respectively. Then coordinates of O are _

Answers

Answered by Anonymous
7
  • GIVEN:-

  1. Coordinate of A (6,2)
  2. Coordinate of B (4,-4)
  3. AB is the diameter of cricle with centre O.

  • To Find:-

Coordinates of O.

  • SOLUTION:-

Let the coordinate of the centre of the circle be O(x, y).

It is said that AB is the diameter and O is the centre.

(refer to the attachment)

Therefore by applying Mid-Point Formula,

\large\boxed{\sf{For\:x=\frac{x_1+x_2}{2}}}

\large\boxed{\sf{For\:y=\frac{y_1+y_2}{2}}}

\large{\sf{Let\:6\:and\:4\:be\:x_1\:and\:x_2\:respectively.}}

and

\large{\sf{Let\:2\:and\:-4\:be\:y_1\:and\:y_2\:respectively.}}

By putting the values,

\large\Longrightarrow{\sf x=\huge\frac{x_1+x_2}{2}}

\large\Longrightarrow\huge{\sf{x=\huge\frac{6+4}{2}}}

\large\Longrightarrow{\sf{x=\huge\frac{10}{2}}}

\large\therefore\boxed{\sf{x=5}}

Now for y,

\large\Longrightarrow{\sf{y=\huge\frac{y_1+y_2}{2}}}

\large\Longrightarrow{\sf{y=\huge\frac{2+(-4)}{2}}}

\large\Longrightarrow{\sf{y=\huge\frac{2-4}{2}}}

\large\Longrightarrow{\sf{y=\huge\frac{-2}{2}}}

\large\therefore\boxed{\sf{y=-1}}

Therefore,

Coordinates of O(x, y) = (5, -1)

\large\pink\therefore\boxed{\sf{\pink{Coordinates\:of\:O\:is\:(5,-1).}}}

Attachments:

vikram991: Perfect :)
Similar questions