Math, asked by yusuf9721, 1 year ago

Ab is a diameter of the circle cd is a chord equal to the radius of the circle. Ac and bd when extended intrsect at a point e

Answers

Answered by Anonymous
1

Hope this helps you buddy ☺️☺️⭐✨✨⭐✌️✌️

Attachments:
Answered by Anonymous
7

AnswEr:

\bf\underline{Solution:-} Join OC, OD and BC.

In triangle OCD, we have

OC = OD = CD \qquad\sf{[Each\:equal\:to\:radius]}

\Rightarrow \sf{\triangle\:OCD\:is\: equilateral}

\Rightarrow \sf\underline{\angle\:COD\:=60°}

_________________________

Now, \sf{\angle\:CBD=}\sf\dfrac{1}{2}\angle\:COD

\Rightarrow \angle\sf{CBD=30°}

________________________

Since \angleACB is angle in a semi-circle.

\therefore \angle ACB = 90°

\rightarrow \angleBCE = 180° - \angleACB = 180° - 90° = 90°.

__________________________

\star \sf\underline{Thus,\:in\triangle\:BCE,\:we\:have}

\angleBCE = 90° and \angleCBE = \angleCBD = 30°

\therefore \angleBCE + \angleCBE + \angleCEB = 180°.

\Rightarrow 90° + 30° + \angleCEB = 180°.

\Rightarrow \angle CEB = 60°.

\Rightarrow \angle AEB = 60°.

#BAL

#Answerwithquality

Similar questions