Math, asked by rajims36596, 5 months ago

AB is a line segment.P and Q arevpointon opposite sides of AB such that each of them is equidistant from the points A and B.Show that the line PQ is the perpendicular bisector of AB​

Answers

Answered by athiraammu
10

Hi malayali,

answer

Given P is equidistant from points A and B

PA=PB        .....(1)

and Q is equidistant from points A and B

QA=QB        .....(2)

In △PAQ and △PBQ

AP=BP  from (1)

AQ=BQ from (2)

PQ=PQ  (common)

So, △PAQ≅△PBQ  (SSS congruence)

Hence ∠APQ=∠BPQ by CPCT

In △PAC and △PBC

AP=BP from (1)

∠APC=∠BPC from (3)

PC=PC  (common)

△PAC≅△PBC  (SAS congruence)

∴AC=BC by CPCT

and ∠ACP=∠BCP by CPCT   ....(4)

Since, AB is a line segment,

∠ACP+∠BCP=180∘ (linear pair)

∠ACP+∠ACP=180∘ from (4)

2∠ACP=180°

∠ACP=180°/2=90°

Thus, AC=BC and ∠ACP=∠BCP=90°

∴,PQ is perpendicular bisector of AB.

Hence proved

______________________________________________________________________________

Note:-

  • Try to attatch the figure of questions like this,so that the question can be answered with ease.

Hope it helps you better✨

Malayali pwoliyalle✌

Follow cheyth koode koodikko✔

Brainliest aayi mark cheyyanum marakkalle⚡

✨@athiraammu✨

Attachments:
Answered by rinasinha92
4

Step-by-step explanation:

in \: figure \: ab \: is \: a \: straight \: line \: on \:

which \: pb \: and \: ap \: sides \: are \: standing

in \: triangle \: aop \: and \: bop

op \: is \: a \: bisector \: of \: angle \: apb \: and \: ab \:

line

then \: angle \: apo = bpo

(op \: is \: the \: bisector \: of \: angle \: apb)

ao = ob \: (op  \: is \: perpendicular \: and \:

the \: bisector \: of \: ab)

angle \: aop = bop = 90 \: degree

op \: perpendicular \: ab \: making \: right \: angle

op = op \: (common)

then \: triangle \: aop \: congruent \: to \:

triangle \: bop

hence \: proved \: that \: op \: is \: bisector \: and

perpendicular \: of \: ab

thanks

Attachments:
Similar questions