Math, asked by hakimyadav61, 1 year ago

Ab is a straight road leading at C the foot of a tower. A being at distance of 200 m from C and B is 125 m nearer. If the angle of elevation of top of the tower at B is double the angle of elevation at A find the height of the tower?

Answers

Answered by berno
3

Answer:

The height of the tower is 100m.

Step-by-step explanation:

According to Question AB is a straight road leading at C which is the foot of tower DC.

Let height of tower be 'h' m.

Given: AC=200 m, AB=75 m, BC=125 m, ∠DBC=2Ф and ∠DAC=Ф

Formula :-

1. \tan \theta =\dfrac{\text{perpendicular}}{\text{base}}

2. \tan(2\theta)=\dfrac{2 tan \theta}{1+tan^{2}\theta}

In ΔADC,  By formula 1

\tan\theta =\dfrac{DC}{AC}

\tan\theta =\dfrac{h}{200}    ........equation-(1)

In ΔBDC,  By formula 1

\tan2\theta =\dfrac{DC}{BC}

\tan2\theta =\dfrac{h}{125}    .........equation-(2)

\dfrac{2\tan\theta}{1+\tan^{2}\theta } =\frac{h}{125}

Putting value of \tan\theta =\dfrac{h}{200} from  equation-(1) in equation-(2)

\dfrac{2(h/200)}{1+(h/200)^{2} }=\dfrac{h}{125}

\dfrac{h/100}{1+(h/200)^{2} }=\dfrac{h}{125}

\dfrac{h/100}{1+h^{2}/40000 }=\dfrac{h}{125}

\dfrac{h/100}{(40000+h^{2})/40000 }=\dfrac{h}{125}

\dfrac{40000h}{100(40000+h^{2}) }=\dfrac{h}{125}

\dfrac{400}{40000+h^{2} }=\dfrac{1}{125}

50000=40000+h^{2}

h^{2}=50000-40000

h^{2}=10000

h=\sqrt{10000}

h=100m

Hence, The height of tower is 100 m  

Attachments:
Similar questions