Math, asked by bhardwajchetankosi, 5 months ago

ab is achord of circle with radius 8 cm distance from the circle is 4 cm find the length of ab ​

Answers

Answered by varshakumari452
3

Answer:

hey buddy here's your answer hope you Will understand plz Mark me as brainliest

Step-by-step explanation:

Solution :

Solution : Let AB be a chord of a circle with centre O and radius 17 cm.

Solution : Let AB be a chord of a circle with centre O and radius 17 cm.Draw OL ⊥ AB. Join OA.

Solution : Let AB be a chord of a circle with centre O and radius 17 cm.Draw OL ⊥ AB. Join OA.Then , OL=8cm and OA=17cm.

Solution : Let AB be a chord of a circle with centre O and radius 17 cm.Draw OL ⊥ AB. Join OA.Then , OL=8cm and OA=17cm.From the right ΔOLA , we have

Solution : Let AB be a chord of a circle with centre O and radius 17 cm.Draw OL ⊥ AB. Join OA.Then , OL=8cm and OA=17cm.From the right ΔOLA , we haveOA2=OL2+AL2

Solution : Let AB be a chord of a circle with centre O and radius 17 cm.Draw OL ⊥ AB. Join OA.Then , OL=8cm and OA=17cm.From the right ΔOLA , we haveOA2=OL2+AL2⇒AL2=OA2−OL2=[(17)2−(8)2]cm2

Solution : Let AB be a chord of a circle with centre O and radius 17 cm.Draw OL ⊥ AB. Join OA.Then , OL=8cm and OA=17cm.From the right ΔOLA , we haveOA2=OL2+AL2⇒AL2=OA2−OL2=[(17)2−(8)2]cm2=(17+8)(17−8)cm2=225cm2

Solution : Let AB be a chord of a circle with centre O and radius 17 cm.Draw OL ⊥ AB. Join OA.Then , OL=8cm and OA=17cm.From the right ΔOLA , we haveOA2=OL2+AL2⇒AL2=OA2−OL2=[(17)2−(8)2]cm2=(17+8)(17−8)cm2=225cm2⇒AL=225−−−√=15cm.

Solution : Let AB be a chord of a circle with centre O and radius 17 cm.Draw OL ⊥ AB. Join OA.Then , OL=8cm and OA=17cm.From the right ΔOLA , we haveOA2=OL2+AL2⇒AL2=OA2−OL2=[(17)2−(8)2]cm2=(17+8)(17−8)cm2=225cm2⇒AL=225−−−√=15cm.Since the perpendicular fromthe centre of a circle to a chord bisects the chord, we have

Solution : Let AB be a chord of a circle with centre O and radius 17 cm.Draw OL ⊥ AB. Join OA.Then , OL=8cm and OA=17cm.From the right ΔOLA , we haveOA2=OL2+AL2⇒AL2=OA2−OL2=[(17)2−(8)2]cm2=(17+8)(17−8)cm2=225cm2⇒AL=225−−−√=15cm.Since the perpendicular fromthe centre of a circle to a chord bisects the chord, we haveAB=2×AL=(2×15)cm=30cm

Answered by priyankachandrasekar
0

Answer:

can you frame the question properly. I think its not properly put. Thanks!

Step-by-step explanation:

Similar questions