Math, asked by jayasreelakshmi61771, 11 months ago

Abar ×b bar =c bar×d bar and abar×cbar =bbar ×d bar mode of abar not equal to mode of dbar and mode of b bar not equal to mode of c bar then show that (a bar -b bar ) and (bbar -cbar) are parallel

Answers

Answered by Swarup1998
3

Condition of parallelism

If the two vectors \mathrm{\vec{a}} and \mathrm{\vec{b}} parallel to each other, then

  • \mathrm{\vec{a}\times\vec{b}=\vec{0}}

Given:

  • \mathrm{\vec{a}\times\vec{b}=\vec{c}\times\vec{d}}

  • \mathrm{\vec{a}\times\vec{c}=\vec{b}\times\vec{d}}

  • \mathrm{|\vec{a}|\neq |\vec{d}|,\:|\vec{b}|\neq |\vec{c}|}

To prove:

  • \mathrm{(\vec{a}-\vec{d})} and \mathrm{(\vec{b}-\vec{c})} are parallel

Proof:

Now \mathrm{(\vec{a}-\vec{d})\times (\vec{b}-\vec{c})}

\mathrm{=\vec{a}\times\vec{b}-\vec{a}\times\vec{c}-\vec{d}\times\vec{b}+\vec{d}\times\vec{c}}

\mathrm{=\vec{a}\times\vec{b}-\vec{a}\times\vec{c}+\vec{b}\times\vec{d}-\vec{c}\times\vec{d}}

\mathrm{=\vec{a}\times\vec{b}-\vec{a}\times\vec{c}+\vec{a}\times\vec{c}-\vec{a}\times\vec{b}}

\mathrm{=\vec{0}}

This satisfy the condition of parallelism.

Thus \mathrm{(\vec{a}-\vec{d})} and \mathrm{(\vec{b}-\vec{c})} are parallel.

This completes the proof.

Answered by tejad020080
0

Answer:

abcd

Step-by-step explanation:

Similar questions