Math, asked by as60012p6hn1h, 1 year ago

Abc=3600 hcf(a,b,c)=2 hcf(a,b)=10 hcf(b,c)=6 lcm(a,b,c)=

Answers

Answered by Kingrk
1
We have :
HCF(a,b,c) =2
HCF(a,b) = 10
HCF(b,c) = 2
HCF(a,c) = 6
abc = 3600
LCM(a,b,c) =
abc × HCF(a,b,c)
HCF(a,b) × HCF(b,c) × HCF(a,c)

=
3600 × 2
10×2×6
= 60
Answered by parmesanchilliwack
1

Answer:  60.

Step-by-step explanation:

Here, abc=3600 hcf(a,b,c)=2 hcf(a,b)=10 hcf(b,c)=6

Since,

L.C.M.(a,b,c) × H.C.F.(a,b) × H.C.F.(b,c) × H.C.F.(a,c) = (abc) × H.C.F.(a,b,c)

L.C.M.(a,b,c)= \frac{(abc) \times H.C.F.(a,b,c)}{H.C.F.(a,b)\times H.C.F.(b,c) \times H.C.F.(a,c)}

=\frac{3600\times 2}{10\times 6\times 2}

=\frac{7200}{120}

=60

Similar questions