Math, asked by harshita3920, 19 days ago

∆ABC, ∠= 80°, CD bisect ∠ and CD ⊥ AB. Find the measure of ∠.​

Answers

Answered by milk5000milk
0

Answer:

\large\underline{\sf{Solution-}}

Solution−

Given integral is

\rm \: \displaystyle \int \: \rm\frac{ {2}^{x + 1} \: - \: {5}^{x - 1} }{ {10}^{x} } dx∫

10

x

2

x+1

−5

x−1

dx

can be rewritten as

\rm \: = \: \displaystyle \int \: \rm\frac{2. {2}^{x} \: - \: {5}^{x}. {5}^{ - 1} }{ {10}^{x} } dx= ∫

10

x

2.2

x

−5

x

.5

−1

dx

\begin{gathered}\rm \: = \: 2\displaystyle \int\rm \: \frac{ {2}^{x} }{ {10}^{x} } \: dx \: - \: \frac{1}{5}\displaystyle \int\rm \: \frac{ {5}^{x} }{ {10}^{x} } \: dx \\ \end{gathered}

= 2∫

10

x

2

x

dx−

5

1

10

x

5

x

dx

\begin{gathered}\rm \: = \: 2\displaystyle \int\rm \: {\bigg(\dfrac{2}{10} \bigg) }^{x} \: dx \: - \: \frac{1}{5}\displaystyle \int\rm \: {\bigg(\dfrac{5}{10} \bigg) }^{x} \: dx \\ \end{gathered}

= 2∫(

10

2

)

x

dx−

5

1

∫(

10

5

)

x

dx

\begin{gathered}\rm \: = \: 2\displaystyle \int\rm \: {\bigg(\dfrac{1}{5} \bigg) }^{x} \: dx \: - \: \frac{1}{5}\displaystyle \int\rm \: {\bigg(\dfrac{1}{2} \bigg) }^{x} \: dx \\ \end{gathered}

= 2∫(

5

1

)

x

dx−

5

1

∫(

2

1

)

x

dx

We know,

\begin{gathered}\boxed{\sf{ \:\displaystyle \int\rm \: {a}^{x} \: dx \: = \: \frac{ {a}^{x} }{loga} + c \: \: }} \\ \end{gathered}

∫a

x

dx=

loga

a

x

+c

So, using this result, we get

\begin{gathered}\rm \: = \: 2 \times \dfrac{{\bigg(\dfrac{1}{5} \bigg) }^{x}}{log\dfrac{1}{5} } \: - \: \dfrac{1}{5} \times \dfrac{{\bigg(\dfrac{1}{2} \bigg) }^{x}}{log\dfrac{1}{2} } + c \\ \end{gathered}

= 2×

log

5

1

(

5

1

)

x

5

1

×

log

2

1

(

2

1

)

x

+c

can be further simplified to

\begin{gathered}\rm \: = \: 2 \times \dfrac{ {5}^{ - x} }{log {5}^{ - 1} } \: - \: \dfrac{1}{5} \times \dfrac{ {2}^{ - x} }{log {2}^{ - 1} } + c \\ \end{gathered}

= 2×

log5

−1

5

−x

5

1

×

log2

−1

2

−x

+c

\begin{gathered}\rm \: = \: - 2 \: \dfrac{ {5}^{ - x} }{log5} \: + \: \dfrac{1}{5} \: \dfrac{ {2}^{ - x} }{log 2} + c \\ \end{gathered}

= −2

log5

5

−x

+

5

1

log2

2

−x

+c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}

f(x)

k

sinx

cosx

sec

2

x

cosec

2

x

secxtanx

cosecxcotx

tanx

x

1

e

x

∫f(x)dx

kx+c

−cosx+c

sinx+c

tanx+c

−cotx+c

secx+c

−cosecx+c

logsecx+c

logx+c

e

x

+c

Similar questions