Math, asked by princebarot2006, 6 hours ago

ABC,A=12,b=17,c=13 b cos C-c cos B​

Answers

Answered by odas83148
1

Answer:

b+c

=

12

c+a

=

13

a+b

=

36

2(a+b+c)

or

11

b+c

=

12

c+a

=

13

a+b

=

18

a+b+c

=k

∴b+c=11k,c+a=12k,a+b=13k,a+b+c=18k

Substituting b+c=11k in a+b+c=18k we get

a+11k=18k or a=7k

Substituting a=7k in c+a=12k we get

c+7k=12k or c=5k

Substituting c=5k in b+c=11k we get

b+5k=11k or b=6k

∴a=7k,b=6k and c=5k

Using cosine rule, we get

cosA=

2bc

b

2

+c

2

−a

2

=

2×6k×5k

(6k)

2

+(5k)

2

−(7k)

2

=

60k

2

36k

2

+25k

2

−49k

2

=

5

1

(On simplification)

cosB=

2ca

c

2

+a

2

−b

2

=

2×5k×7k

(5k)

2

+(7k)

2

−(6k)

2

=

70k

2

25k

2

+49k

2

−36k

2

=

35

19

(On simplification)

cosC=

2ab

a

2

+b

2

−c

2

=

2×7k×6k

(7k)

2

+(6k)

2

−(5k)

2

=

84k

2

49k

2

+36k

2

−25k

2

=

7

5

(On simplification)

cosA:cosB:cosC=

5

1

:

35

19

:

7

5

On simplification, we get

cosA:cosB:cosC=

35

7

:

35

19

:

35

25

=7:19:25

Answered by mlgiram99
0

Step-by-step explanation:

ABC,A=12,b=17,c=13 b cos C-c cos B

Similar questions