∆ ABC, ∠A +∠B = 116° and ∠B + ∠C = 126°. The measure of angles ∠A, ∠B and ∠C are
Answers
Answered by
41
To find :-
- we need to find measure of angles ∠A, ∠B and ∠C
Solution :
- ∠A +∠B = 116° .....1)
- ∠B + ∠C = 126° ......2)
From equation (1)
⠀⠀⠀⠀⠀⠀∠A +∠B = 116
⠀⠀⠀⠀⠀⠀∠B = 116 - ∠A .....3)
From equation (2)
⠀⠀⠀⠀⠀⠀∠B + ∠C = 126°
⠀⠀⠀⠀⠀⠀116 - ∠A + ∠C = 126°
⠀⠀⠀⠀⠀⠀∠C - ∠A = 126 - 116
⠀⠀⠀⠀⠀⠀∠C = 10 + ∠A ....(4)
We know that,
♻️Sum of all angles of triangle = 180
So,
∠A + ∠B + ∠C = 180
- From (3) and (4)
⟶ ∠A + (116 - ∠A) + 10 + ∠A = 180
⟶ ∠A + 116 - ∠A + 10 + ∠A = 180
⟶ ∠A + 126 = 180
⟶ ∠A = 180 - 126
⟶ ∠A = 54
So,
⇝∠B = 116 - ∠A
⇝∠B = 116 - 54
⇝∠B = 62
And
›› ∠C = 10 + ∠A
›› ∠C = 10 + 54
›› ∠C = 64
Hence,
Measure of all angles of ∆ABC are :-
- ∠A = 54
- ∠B = 62
- ∠C = 64
Verification :-
Sum of all angles of triangle = 180
››➔ ∠A + ∠B + ∠C = 180
››➔ 54 + 62 + 64 = 180
››➔ 54 + 126 = 180
››➔ 180 = 180
LHS = RHS
Hence VERIFIED.
━━━━━━━━━━━━━━━━━━━━━━━━━
Similar questions