Math, asked by Anonymous, 8 months ago

ABC and DBC are two isosceles triangles in the same base BC show that <ABC =<ACD​

Attachments:

Answers

Answered by Rubellite
274

Given :

  • ABC and DBC are two isosceles triangle on the same base BC.

To Prove :

  • \displaystyle{\sf{ \angle ABD = \angle ACD}}

Solution :

\displaystyle{\sf{ \because ABC\:is\:an\:isosceles\:triangle\:on\:the\:base\:BC.}}

\displaystyle{\sf{ \therefore \angle ABC = \angle ACB\:\:\:\:\:....(1)}}

\displaystyle{\sf{ \because DBC\:is\:an\:isosceles\:triangle\:on\:the\:base\:BC.}}

\displaystyle{\sf{ \therefore \angle DBC = \angle DCB\:\:\:\:\:....(2)}}

Adding the corresponding sides of (1) and (2), we get

\displaystyle{\sf{ \angle ABC + \angle DBC = \angle ACB + \angle DCB}}

\large{\boxed{\sf{\red{ \angle ABD = \angle ACD}}}}

Hence, proved.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬


Cynefin: Awesome(◍•ᴗ•◍)
Answered by Anonymous
113

Given :

  • ABC and DBC are two iscoceles triangles.

To Prove :

  • ∠ABD = ∠ACD

Solution :

In Δ ACD and ΔABD :

 : \implies\tt{AC=AB(Given)} \\ </p><p> \\ </p><p> : \implies\tt{DC=BD(Given)} \\  \\ </p><p></p><p> : \implies\tt{AB=AB(Common)} \\

So , By SSS rule Δ ACD ≅ Δ ABD...

Now :

 : \implies\tt{\angle{ABD}=\angle{ACD} \:  \: (By\:CPCT\:Rule)} </p><p>

_______________________

SAS Rule :

  • If three sides of one triangle are equal to the three sides of another triangle then the two triangles are congruent.

Congruence of Triangle :

  • Two are congruent if the sides and angles of one triangle are equal to corresponding sides and angles of the other triangle according to some other rules.

CPCT means Corresponding Parts of Congruent Triangle.

_______________________

Attachments:
Similar questions
Math, 8 months ago