ABC is a right angle to the triangle BAC. A point D is taken on BC that BD = AD. Proves that D is the midpoint of BC.
Answers
Answered by
0
Answer:
In ∆ACB and ∆ACD
Pythagoras thm
AD²=DC²+AC²
Hence, AC²=AD²-DC²________(1)
NOW,
AB²=AC²+BC²
AB²=(AD²-DC²)+BC²_____FROM(1)
AB²=AD²-(½BC)²+BC²______D is midpoint
AB²=AD²-¼BC²+BC²
Multipy by 4
4AB²=4AD²-DC²+4BC²
3AB²+AB²=4AD²+3BC²
AB²=4AD²+3BC²-3AB²
AB²=4AD²-3(BC²+AB²)
AB²=4AD²-3AC²_____Pythagoras thm
Hence Proved.
hopefully this will help you
Similar questions