ABC is a right angle triangle in which AB = AC. The bisector of angle A meets BC at D.Prove that BC = 2AD
Answers
Answered by
0
In Δ , ABC right angled at A and AB = AC
Giben ∠ A = ∠ B
∠A+ ∠B+ ∠C=180º [We know that Sum of angles of a triangle = 180º]
90º+∠B+∠B=180º [∠ A = ∠ B ]
2∠B=180º -90º
2∠B=90º
∠B=45º………………………………………..(i)
ALSO , AD is the bisector of BAC
So , ∠BAD = ∠CAD = 90º/2 = 45º …………………………….(ii)
∠BAD = ∠ABC
SO, AD = BD ………………………………(iii) .
Similarly angle CAD = angle ACD
So, AD = DC ………………………………..(iv)
adding equation (iii) and (iv) we will get,
AD + AD = BD+DC
2AD = BC Prooved
Attachments:
Similar questions