Math, asked by joydevmandal032, 3 days ago

∆ ABC is a right-angled triangle at B. If AB = 3cm and AC = 5cm, calculate BC.​

Answers

Answered by samdrishtff90
1

Answer:

4cm

Step-by-step explanation:

by pythagoras theorem

AC² = BC²+AB²

5² = BC²+ 3²

25-9 = BC²

√16 = BC

BC = 4

Answered by Anonymous
10

Answer:

Given :

∆ABC is a right-angled triangle.

AB = 3cm and AC = 5cm

To Find :

BC in right angled triangle

Solution :

Pythagoras theorem states that “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”. 

\longrightarrow{\sf{{(AC)}^{2}  =  {(AB)}^{2}  +  {(BC)}^{2}}}

In this question, we have provided that :

  • ➛ AB = 3 cm
  • ➛ AC = 5 cm
  • ➛ BC = ?

Substituting all the given values in the formula to find the value of BC in right angled triangle :

\begin{gathered}\qquad\longrightarrow{\sf{{(AC)}^{2}  =  {(AB)}^{2}  +  {(BC)}^{2}}} \\  \\ \qquad\longrightarrow{\sf{{(5)}^{2}  =  {(3)}^{2}  +  {(BC)}^{2}}} \\  \\ \qquad\longrightarrow{\sf{(5 \times 5)  =  (3 \times 3)  +  {(BC)^{2} }}} \\  \\ \qquad\longrightarrow{\sf{25 = 9 +  {(BC)^{2}}}} \\  \\ \qquad\longrightarrow{\sf{{(BC)^{2} = 25 - 9}}} \\  \\ \qquad\longrightarrow{\sf{{(BC)^{2} = 16}}} \\  \\ \qquad\longrightarrow{\sf{{(BC) = \sqrt{16}}}} \\  \\ \qquad\longrightarrow{\sf{{(BC) = \sqrt{2 \times 2 \times 2 \times 2}}}} \\  \\ \qquad\longrightarrow{\sf{{(BC) = 2 \times 2}}} \\  \\ \qquad\longrightarrow{\sf{\underline{\underline{\red{{(BC) =4  \: cm}}}}}}\end{gathered}

Hence, the value of BC in right angled triangle is 4 cm.

\rule{300}{1.5}

Learn More :

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Triangle:-}\\ \\ \star\sf Triangle \:area = \dfrac{1}{2}\times b \times h\\ \\ \star\sf Triangle \: perimeter=a+b+c\\\\ \star\sf Scalene\:\triangle=\sqrt{s (s-a)(s-b)(s-c)}\\\\\star\sf Equilateral\: \triangle\:area = \dfrac{\sqrt{3}}{4}\times{side}^{2}\\\\\star\sf Equilateral \:\triangle\:perimeter = 3 \times side\\\\\star\sf Isosceles\: \triangle\:area= \dfrac{3}{4}\sqrt{{4b}^{2}-{a}^{2}}\\\\\star\sf Isosceles\:\triangle\:perimeter=a+2b\end{minipage}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

\rule{220pt}{4pt}

Attachments:
Similar questions