ABC is a right angled triangle in which ABC =90 degree and c lies on the x-axis. find the coordinate of c and the area of the triangle
Answers
Step-by-step explanation:
Let the point C be (h,K)
Let the point C be (h,K)and A≡(l,0),B≡(0,m)
Let the point C be (h,K)and A≡(l,0),B≡(0,m)Slope of AC=h−lk⟶(1)
Let the point C be (h,K)and A≡(l,0),B≡(0,m)Slope of AC=h−lk⟶(1)Slope of BC=hK−m⟶(2)
Let the point C be (h,K)and A≡(l,0),B≡(0,m)Slope of AC=h−lk⟶(1)Slope of BC=hK−m⟶(2)Using distance formula,
Let the point C be (h,K)and A≡(l,0),B≡(0,m)Slope of AC=h−lk⟶(1)Slope of BC=hK−m⟶(2)Using distance formula,a=(h−l)2+K2
Let the point C be (h,K)and A≡(l,0),B≡(0,m)Slope of AC=h−lk⟶(1)Slope of BC=hK−m⟶(2)Using distance formula,a=(h−l)2+K2⇒h−l=a2−K2⟶(3)
Let the point C be (h,K)and A≡(l,0),B≡(0,m)Slope of AC=h−lk⟶(1)Slope of BC=hK−m⟶(2)Using distance formula,a=(h−l)2+K2⇒h−l=a2−K2⟶(3)Similarly
Let the point C be (h,K)and A≡(l,0),B≡(0,m)Slope of AC=h−lk⟶(1)Slope of BC=hK−m⟶(2)Using distance formula,a=(h−l)2+K2⇒h−l=a2−K2⟶(3)SimilarlyK−m=b2−h2⟶(4)
Let the point C be (h,K)and A≡(l,0),B≡(0,m)Slope of AC=h−lk⟶(1)Slope of BC=hK−m⟶(2)Using distance formula,a=(h−l)2+K2⇒h−l=a2−K2⟶(3)SimilarlyK−m=b2−h2⟶(4)Slope of AC=a2−K2K
Let the point C be (h,K)and A≡(l,0),B≡(0,m)Slope of AC=h−lk⟶(1)Slope of BC=hK−m⟶(2)Using distance formula,a=(h−l)2+K2⇒h−l=a2−K2⟶(3)SimilarlyK−m=b2−h2⟶(4)Slope of AC=a2−K2KSlope of BC=hb2−h2
Let the point C be (h,K)and A≡(l,0),B≡(0,m)Slope of AC=h−lk⟶(1)Slope of BC=hK−m⟶(2)Using distance formula,a=(h−l)2+K2⇒h−l=a2−K2⟶(3)SimilarlyK−m=b2−h2⟶(4)Slope of AC=a2−K2KSlope of BC=hb2−h2Since AB is perpendicular to BC
Let the point C be (h,K)and A≡(l,0),B≡(0,m)Slope of AC=h−lk⟶(1)Slope of BC=hK−m⟶(2)Using distance formula,a=(h−l)2+K2⇒h−l=a2−K2⟶(3)SimilarlyK−m=b2−h2⟶(4)Slope of AC=a2−K2KSlope of BC=hb2−h2Since AB is perpendicular to BC∴ a2−K2K.h