Math, asked by dericdias62, 9 months ago

ABC is a right triangle with AB = AC. Bisector of ∠A meets BC at D. Prove that BC = 2 AD.

Answers

Answered by Anonymous
6

ANSWER✔

\large\underline\bold{GIVEN,}

\dashrightarrow \triangle BAC \:is\:a\:right\:angled\:triangle.

\dashrightarrow \angle BAC=90\degree

\dashrightarrow AB= AC

\dashrightarrow line\:AD\:bisects\:BC \\ \angle BAD= \angle DAC= \dfrac{1}{2} \angle BAC\\ \angle BAD= \angle DAC = \dfrac{90}{2}\\ \cancel\dfrac{90}{2} \\ \boxed{\angle BAD= \angle DAC =45\degree}

\large\underline\bold{TI\:PROVE,}

\dashrightarrow 2AD=BC

\large\underline\bold{SOLUTION,}

\dashrightarrow AB=AC \\ \therefore \angle B = \angle C

\therefore by\:angle\:sum\:property\:of\:triangle

\dashrightarrow \angle A +\angle B +\angle C=180\degree

\implies \angle A +\angle B +\angle B = 180\degree\:--\boxed{\angle B = \angle C }

\implies 90+ 2\angle B =180

\implies 2 \angle B = 180-90

\implies 2\angle B=90

\implies \angle B= \dfrac{90}{2}

\implies \angle B= \cancel\dfrac{90}{2}

\implies \angle B=45

NOW,

\therefore in\:\triangle ABD \: and \: \triangle ACD

\dashrightarrow AD=AD \:--- common\:side.

\dashrightarrow BD= CD \:--- as\: AD \:bisect\:BC

\dashrightarrow \angle B= \angle C \:---each\:45\degree

\sf\therefore \triangle ABD \cong \triangle ACD\:--- SAS\:RULE\:of\:congruency.

\dashrightarrow \angle ADB = \angle ADC \:---90\degree\:---c.p.c.t.

THEREFORE

\dashrightarrow in\: \triangle ABD \\ \therefore\: by\: Pythagoras\: theorem,\\ AB^2=BD^2+AD^2\:---\boxed{1}

\dashrightarrow in\: \triangle ADC \\ \therefore\: by\: Pythagoras\: theorem,\\ AC^2=CD^2+AD^2\:---\boxed{2}

\therefore now,adding\:these\:both\:we\:get\:,

AB²=BD²+AD²

AC²=CD²+AD²

————————————

AB²+AC²=2AD²+ BD²+CD²

\implies AB^2+AC^2=2AD^2+ 2BD^2\:---\boxed{BD=CD}

\implies AB^2 +AC^2= 2(AD^2+BD^2)

\implies BC^2= 2(AD^2+BD^2)\:--\boxed{AB+AC=BC}

\implies \dfrac{BC^2}{2} =AD^2 + \bigg( \dfrac{ BC}{2} \bigg) \:---\boxed{ BD = \dfrac{1}{2} BC}

\implies  \dfrac{BC^2}{2} + \dfrac{BC^2}{4}= AD^2

\implies \dfrac{4BC^2-2BC^2}{8}= AD^2

\implies \dfrac{2BC^2}{8}= AD^2

\implies  \dfrac{\cancel{2}\:BC^2}{\cancel{8}}= AD^2

\implies \dfrac{BC^2 }{2} = AD^2

\implies BC^2=2AD^2

\implies BC^{\cancel{2}}=2AD^{\cancel{2}}

\implies BC=2AD

\large{\boxed{\bf{ \star\:\: HENCE\:PROVED\:\: \star}}}

__________________

\red{\text{FOR DIAGRAM PLEASE REFER THE ATTACHMENT.}}

Attachments:
Answered by mysticd
4

 \underline{\pink{ Given :}}

 ABC \:is \: a \: right \: triangle .

 AB = AC \: ---(1)

 and \: Bisector \: of \: \angle A \: meets \:BC

 at \: D

 \underline{\pink{ To \: Prove :}}

 \blue {BC = 2AD }

 \underline{\pink{ Proof :}}

 i) In \: \triangle ABC, \angle A = 90\degree

 AB = AC \: (given )

 \angle { ABC } = \angle { ACB}

 \blue{ ( \because Angles \: opposite \: to }

 \blue { equal \: sides \: are \; equal ) }

 \therefore \angle { ABC } = \angle { ACB} = 45\degree \: --(2)

 ii) Bisector \: of \: \angle A \: meets \:BC

 \angle { BAD } = \angle {ABD} = 45\degree

 AD = BD \: --(3)

 \blue{ ( \because Angles \: opposite \: to }

 \blue { equal \: sides \: are \; equal ) }

 iii) Similarly,

 \angle { ACD } = \angle {DAC} = 45\degree

 AD = DC \: --(4)

/* Add Equations (3) and (4) , we get */

 AD + AD = BD + DC

 \implies 2AD = BC

 Hence\: proved

•••♪

Attachments:
Similar questions