Abc is a right triangle with ab = ac. Bisector of angle a meets bc at d prove that bc = 2 ad.
Answers
Answered by
4
Answer:
Step-by-step explanation:
In Δ , ABC right angled at A and AB = AC
=> ∠ A = ∠ B
∠A+ ∠B+ ∠C=180º (∵Sum of angles of a triangle = 180º)
90º+∠B+∠B=180º
2∠B=180º -90º
2∠B=90º
∠B=45º………………………………………..(i)
Given , AD is the bisector of ∠BAC
=> ∠BAD = ∠CAD = 90º/2 = 45º …………………………….(ii)
∠BAD = ∠ABC
=> AD = BD ………………………………(iii) .
Similarly ∠CAD = ∠ACD
=>, AD = DC ………………………………..(iv)
adding equation (iii) and (iv)
We will get, AD + AD = BD+DC
=> 2AD = BC
Similar questions