Math, asked by meetsalunkhe505, 9 months ago

ABC is a right triangle with AB = AC. If bisector of ∠A meets BC at D,then prove that BC = 2AD​

Answers

Answered by rohanspatil
4

Step-by-step explanation:

ABC is a right triangle with AB = AC. If bisector of ∠A meets BC at D,then prove that BC = 2AD

plz mark me brainliest

Answered by Anonymous
10

Step-by-step explanation:

\overbrace{ \underbrace{ \fcolorbox{white}{pink}{ \blue\dag \tt SOLUTION ☞  \red\dag}}} </p><p>

{\tt{In Δ , ABC right angled at A and AB = AC }}

→_→

{\tt{Hence ∠ A = ∠ B}} 

{\tt{We know that Sum of angles of a triangle = 180º }} 

→_→

{\tt{∠A+ ∠B+ ∠C=180º}}  

{\tt{90º+∠B+∠B=180º}}  

{\tt{2∠B=180º -90º}} 

{\tt{2∠B=90}} 

{\tt{∠B=45º…………………..(i)}}  

{\tt{ALSO , AD is the bisector of BAC}}  

{\tt{So , ∠BAD = ∠CAD = 90º/2 = 45º ………….(ii)}}

{\tt{∠BAD = ∠ABC}}  

{\tt{SO, AD = BD ………(iii)}}  

{\tt{Similarly angle CAD = angle ACD }} 

{\tt{So, AD = DC …………..(iv)}}

{\tt{adding equation (iii) and (iv)}} 

☞ ̄ᴥ ̄☞

{\tt{We will get, AD + AD = BD+DC </p><p>2AD = BC}}

❣️❣️ HOPE THIS HELPS❣️❣️

Similar questions