Science, asked by Anonymous, 5 months ago

ABC is a right triangle with AB = AC . if bisector of angle A meets BC at D and AD = 2 root2 cm , then the perimeter of triangle ABC is

don't spam

Answers

Answered by hotcupid16
41

 \underline{\underline{\sf{\pink{Given :} }}}

∆ABC is a right Angled triangle

AB = AC

AD is bisector of ∠A

 \sf AD = 2\sqrt{2}

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

 \underline{\underline{\sf{\pink{To\:Find :} }}}

Perimeter of ∆ABC

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

\underline{\underline{\sf{\pink{Solution :} }}}

In ∆ABC,

AB = AC

\underline{\tt{As\:we\:know\:that,}}

\star\:{\boxed{\sf{\pink{Angle \: opposite \: to \: equal \: sides \: are \: equal }}}}

 : \: \implies \sf{\angle C  = \angle B - (i)}

\underline{\tt{Now, \:by \: angle\:sum \: property,}}

∠A + ∠B + ∠C = 180°

From (i)

∠A + ∠B + ∠B = 180°

 : \: \implies \sf{90^{\circ} + 2 \angle B = 180^{\circ}}

 : \: \implies \sf{2 \angle B = 180^{\circ} - 90^{\circ}}

 : \: \implies \sf{2 \angle B = 90^{\circ}}

 : \: \implies \sf{ \angle B = \dfrac{90^{\circ}}{2}}

 : \: \implies \sf{\angle B = 45^{\circ}}

\underline{\tt{Now, \: \angle B = \angle C}}

 : \: \implies \sf{\angle C = 45^{\circ}}

_______________________________

In ∆ABD

As, AD bisects BC,

Therefore, ∠ADB = 90°

\underline{\tt{Now, \: by \: angle\:sum \: property,}}

∠B + ∠DAB + ∠ADB = 180°

45° + ∠DAB + 90° = 180°

45° + ∠DAB = 180° - 90°

∠DAB = 90° - 45°

∠DAB = 45°

As, ∠B = ∠DAB (both 45°) and we know that sides opposite to equal angles are equal

Therefore, BD = AD - (ii)

_______________________________

In ∆ACD

As, AD bisects BC,

Therefore, ∠ADC = 90°

\underline{\tt{Now, \: by \: angle\:sum \: property,}}

∠C + ∠DAC + ∠ADC = 180°

45° + ∠DAC + 90° = 180°

45° + ∠DAC = 180° - 90°

∠DAC = 90° - 45°

∠DAC = 45°

As, ∠C = ∠DAC (both 45°) and we know that sides opposite to equal angles are equal

Therefore, CD = AD -(iii)

_______________________________

From (ii) and (iii),

BD + CD = AD + AD

Now, we have BD + CD = BC

 : \: \implies \sf{BC  = 2AD}

Now, we are given AD =  \sf 2\sqrt{2}cm

 : \: \implies \sf{BC  = 2 \times 2\sqrt{2}}

 : \: \implies \sf{BC  = 4\sqrt{2}cm }

_______________________________

In ∆ABC

\underline{\tt{By \: Pythagoras' \: theorem,}}

\star\:{\boxed{\sf{\pink{H^{2} = B^{2} + P^{2}}}}}

 : \: \implies \sf{BC^{2} = AB^{2} + AC^{2}}

 : \: \implies \sf{{(4\sqrt{2})}^{2} = AB^{2} + AC^{2}}

\underline{\tt{Now, \: we \: are \: given \: AB = AC}}

 : \: \implies \sf{{(4\sqrt{2})}^{2} = AB^{2} + AB^{2}}

 : \: \implies \sf{16 \times 2 = 2AB^{2}}

 : \: \implies \sf{32 = 2AB^{2}}

 : \: \implies \sf{\dfrac{32}{2} = AB^{2}}

 : \: \implies \sf{16 = AB^{2}}

 : \: \implies \sf{\sqrt{16} = AB}

 : \: \implies \sf{AB = 4 cm}

As, AB = AC (given)

 : \: \implies \sf{AC = 4 cm}

Now, We have

AB = 4 cm

AC = 4 cm

\sf{BC  = 4\sqrt{2}cm }

_______________________________

\underline{\tt{Now, \:we \: have \: to \: find \: perimeter,}}

\star\:{\boxed{\sf{\pink{Perimeter \: of \: triangle = a + b + c}}}}

In ∆ABC,

a = AB = 4 cm

b = AC = 4 cm

c = \sf{BC  = 4\sqrt{2}cm }

 : \implies \sf{Perimeter = 4 cm + 4 cm + 4\sqrt{2}cm }

 : \implies \sf{Perimeter = 8 + 4\sqrt{2}cm}

 \pink{\sf \therefore \: Perimeter \: of  \: \triangle ABC = 8 + 4\sqrt{2}cm}

Attachments:

Anonymous: Awesome
Anonymous: hii
Anonymous: i luv u plz accept me !!!
Answered by Anonymous
1

Explanation:

Step-by-step explanation:

Given Equation:-

⠀⠀⠀⠀ \sf{\bigg[ \dfrac{5 {x}^{2} - 10}{12 } \bigg] }

To find:-

value of x

Solution:-

use factor theorem

take the value of equation =0

\\\qquad\quad\displaystyle\sf{:}\longrightarrow \left [\dfrac {5x^2-10}{12}\right]=0

\\\qquad\quad\displaystyle\sf{:}\longrightarrow \dfrac {5x^2-10}{12}=0

using cross multiplication

\\\qquad\quad\displaystyle\sf{:}\longrightarrow 5x^2-10=0

\\\qquad\quad\displaystyle\sf{:}\longrightarrow 5x^2=10

\\\qquad\quad\displaystyle\sf{:}\longrightarrow x^2=\dfrac {10}{5}

\\\qquad\quad\displaystyle\sf{:}\longrightarrow x^2=2

\\\qquad\quad\displaystyle\sf{:}\longrightarrow x=\sqrt {2}

\\\\\therefore\sf x=\sqrt {2}.

Similar questions