ABC is a triangle. A circle touches sides AB and AC produced and side BC at X,Y and Z respectively.Show that AX=1/2 perimeter of triangle ABC.
Answers
Answered by
3
AP = 1/2 (Perimeter of ΔABC)
Proof: Lengths of tangents drawn from an external point to a circle are equal.
⇒ AQ = AR, BQ = BP, CP = CR.
Perimeter of ΔABC = AB + BC + CA
= AB + (BP + PC) + (AR – CR)
= (AB + BQ) + (PC) + (AQ – PC) [AQ = AR, BQ = BP, CP = CR]
= AQ + AQ
= 2AQ
⇒ AQ = 1/2 (Perimeter of ΔABC)
∴ AQ is the half of the perimeter of ΔABC.
Similar questions