Math, asked by pradhanruthrani, 4 months ago

ABC is a triangle and G (1,2) is its centroid. If A(2,5) and B(6, b) and C (a,3) , (3) then find a and b. Also find the length of side BC.

Answers

Answered by Anonymous
12

Answer:

Explanation:

Given :

  • ΔABC is a triangle and G (1,2) is centroid.
  • A(2,5) and B(6, b) and C (a,3).

To Find :

  • Find the value of a and b.
  • Find the length of side BC.

Solution :

Find the value of a and b.

Applying centroid formula,

 \tt \red{x =  \dfrac{x_1 +x_2 +  x_3 }{3}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \: y =  \dfrac{y_1 +y_2 + y_3 }{3} } \\  \\  \\ : \implies \tt\: 1 =  \dfrac{2 + 6 + a}{3}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \: 2 =  \dfrac{5 + b+ 3}{3} \\ \\ \\  :  \implies \tt \: 1 =  \dfrac{8 + a}{3}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \: 2 =  \dfrac{8 + b}{3}  \\  \\  \\ :  \implies \tt 3 = 8 + b\:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \: 6 = 8 + b \\  \\  \\    \implies \tt \purple{a = 5} \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \purple{b = 2}

Find the length of side BC.

Applying distance formula,

 \tt \red{d = \sqrt{(x_2 - x_1) {}^{2} +(y_2 - y_1) {}^{2} }  } \\  \\  \\   :  \implies  \tt \: BC =  \sqrt{(5 - 6) {}^{2} + (3 - 2) {}^{2}  }  \\  \\  \\ :  \implies  \tt \: BC =  \sqrt{( - 1) {}^{2}  + (1) {}^{2} }  \\  \\  \\ :  \implies  \tt \: BC =  \sqrt{(1 + 1) {}^{2} }  \\  \\  \\ :  \implies  \tt \: BC =  \sqrt{(2) {}^{2} }  \\  \\  \\ :  \implies  \tt \purple{BC =  2\: \:  units }


Anonymous: Mind blowing answer ✌
BrainlyPhantom: Excellent!
Anonymous: Nice answer bro keep it up ✌
Anonymous: Fantastic
Answered by anshu24497
1

 \large \mathfrak{ \underline{ \color{purple}{Given : }}}

  • \sf{ \green{ABC  \: is \:  a  \: triangle  \: and  \: G (1,2) is \:  centroid.}}
  •  \sf{ \green{A(2,5) and  \: B(6, b) and \:  C (a,3).}}

 \large \mathfrak{ \underline{ \color{navy}{To Find :}}}

  •  \sf{ \orange{The  \: value  \: of \:  a  \: and \:  b}}
  •  \sf{ \orange{The \:  length \:  of \:  side  \: BC.}}

 \large \mathfrak{ \underline{ \color{green}{Solution : }}}

Finding the value of a and b.

 \sf{ \color{teal}{Applying centroid formula,}}

\begin{gathered} \boxed{\rm \red{x = \dfrac{x_1 +x_2 + x_3 }{3} \: \: \: \:and \: \: \: \: y = \dfrac{y_1 +y_2 + y_3 }{3} }} \\ \\ \\  { \blue{\implies \sf\: 1 = \dfrac{2 + 6 + a}{3} \: \: \: \: \: \: \: and \: \: \: \: \: \: 2 = \dfrac{5 + b+ 3}{3}}} \\ \\ \\  { \blue{\implies \sf\: 1 = \dfrac{8 + a}{3} \: \: \: \: \: \: \: and \: \: \: \: \: \: 2 = \dfrac{8 + b}{3}}} \\ \\ \\ { \blue{ \implies \sf 3 = 8 + b\: \: \: \: \: \: \: and \: \: \: \: \: \: 6 = 8 + b}} \\ \\ \\ { \pink{\implies \sf{a = 5}\: \: \: \: \: \: \: and \: \: \: \: \: \: \ \: b = 2}}\end{gathered}

Finding the length of side BC.

 \sf{ \color{teal}{Applying distance  formula,}}

\begin{gathered} \boxed{\rm\red{d = \sqrt{(x_2 - x_1) {}^{2} +(y_2 - y_1) {}^{2} } }} \\ \\ \\{ \blue{ \implies \sf\: BC = \sqrt{(5 - 6) {}^{2} + (3 - 2) {}^{2} }}} \\ \\ \\ { \blue{ \implies \sf \: BC = \sqrt{( - 1) {}^{2} + (1) {}^{2} }}} \\ \\ \\ { \blue{\implies \sf \: BC = \sqrt{(1 + 1) {}^{2}}} } \\ \\ \\ { \blue{\implies \sf\: BC = \sqrt{(2) {}^{2}}} } \\ \\ \\ { \pink{ \implies \sf {BC = 2\: \: units }}}\end{gathered}

Similar questions
Math, 10 months ago