Math, asked by nabinrigaatemaoka, 1 year ago

ABC is a triangle and PQ is a straight line meeting AB in P and AC in Q. If AP= 1 cm, PB = 3 cm, AQ = 1.5 cm, QC= 4.5 m, prove that area of APQis 1/6 of area of ABC

Answers

Answered by Manjula29
84
AP = 1 cm , PB = 3cm , AQ= 1.5 cm , QC = 4.5cm ( given), we have to prove, (APQ) = 1/16 ar (ABC) proof: AP = 1 cm  and PB = 3 cm then AB = 4 cm since the sides are in proportion then the line PQ is parallel to BC in triangle APQ and triangle ABC angle A = angle A                                  (common) angle APQ = angle B                            (alt. int. angles) angle AQP = angle C                            (alt. int. angles) therefore,                 triangle APQ ~ triangle ABC  ar(APQ)/ ar(ABC) = AP2 / AB2          (area of two similar triangles is equal to the square of their                                                                                                                                                                                     coressponding side) ar(APQ) / ar(ABC) = 12/ 42 ar (APQ) / ar (ABC) = 1/16 therefore                ar(APQ) = 1/ 16 ar(ABC) hence proved.

Manjula29: Ignore the above answer. See below.
Manjula29: Firstly, it is supposed to be 1/16 instead of 1/6. [Solution] GIVEN :- AP = 1 cm , PB = 3cm , AQ= 1.5 cm , QC = 4.5cm . TO PROVE :- ar(APQ) = 1/16 ar(ABC). PROOF:- AP = 1 cm  and PB = 3 cm then AB = 4 cm.
Manjula29: Since the sides are in proportion, then PQ || BC. In ∆ APQ and ∆ ABC —> (1) angle A = angle A (common)
(2) angle APQ = angle B (alt. int. angles)
(3) angle AQP = angle C (alt. int. angles). Therefore, ∆ APQ ~ triangle ABC. And, ar(APQ)/ ar(ABC) = AP² / AB² (area of two similar triangles is equal to the square of their corresponding side). So, ar(APQ) / ar(ABC) = 1²/ 4² = ar(APQ) / ar(ABC) = 1/16 . Therefore ar(APQ) = 1/ 16 ar(ABC) . Hence proved.
Similar questions