Math, asked by Anonymous, 6 months ago

ABC is a triangle. D, E and F are the midpoints of AB, AC and BC respectively. Prove that DE and
AF bisect each other.




don't spam ​

Answers

Answered by anshumanironman
2

Step-by-step explanation:

Let G be the centroid of triangle ABC. Given E and F are the mid points of BC and AC respectively. Thus, by mid point theorem, AD∥EF

AB=2EF

AD=EF (I) (D is mid point of AB)

Now, In △ADG and △GEF,

∠AGD=∠EGF (Vertically opposite angles)

AD=EF (From I)

∠ADG=∠GFE (Alternate angles for parallle lines EF and AD)

△ADG≅△EGF (ASA rule)

Thus, AG=GE (Corresponding sides)

Also, DG=GF (Corresponding sides)

Thus, AE and DF bisect each other at G.

thnks plz if possible inbox me class 10 guy

hope it helps u

Attachments:
Similar questions