Math, asked by kolamkujur, 7 months ago

ABC is a triangle in which AB equal to AC equal to 4 cm and angle A equal to 90 degree calculate the area of triangle ABC and the length of perpendicular from a to BC​

Answers

Answered by khannas918
4

Step-by-step explanation:

∠A = 90°

AB = AC = 4 cm

Area of triangle = 1/2*Base*Height

                          =1/2*4*4

                          =8 cm^2

Hypotenuse = [4^2 + 4^2]^1/2

                     = 32^1/2

                     =4root2 cm

Area of triangle = 1/2*hypotenuse*perpendicular on hypotenuse

8 = 1/2*4root2*x

x = 2root2 cm

Hope it helps

Mark it as the brainliest

Answered by Anonymous
105

Diagram:

\setlength{\unitlength}{1cm} \begin{picture}(6,6) \put(2,2){\line(0, 1){2.5}} \put(2, 2){\line(1, 0){2}} \put(4,2){\line(-4,5){2}}  \put(2,2){\line(3,5){1}}  \put(2,4.5){\large{B}} \put(2,1.5){\large{A}}\put(4,1.5){\large{C}} \put(3,3.5){\large{O}} \end{picture}

Given:

  • Right angle ABC
  • AB = AC = 4cm
  • \angle A = 90°

Find:

  • Calculate the area of triangle ABC
  • Length of Perpendicular from A to BC

Solution:

we, know that

\boxed{\red{\rm Area \: of \: triangle =  \dfrac{1}{2}  \times b \times h}}

where,

  • b = AC = 4cm
  • h = AB = 4cm

So,

 \dashrightarrow\purple{\rm Area \: of \: triangle =  \dfrac{1}{2}  \times b \times h}

 \dashrightarrow\purple{\rm Area \: of \: triangle =  \dfrac{1}{2}  \times 4 \times 4}

 \dashrightarrow\purple{\rm Area \: of \: triangle =  \dfrac{1}{2}  \times 16}

 \dashrightarrow\purple{\rm Area \: of \: triangle =  \dfrac{16}{2}}

 \dashrightarrow\purple{\rm Area \: of \: triangle = 8 {cm}^{2} }

So, area of triangle ABC = 8cm²

________________________

In triangle ABC

BY PYTHOGORAS THEOREM

 \longmapsto\orange{\rm H^2 = P^2 + B^2 }

 \longmapsto\orange{\rm {BC}^2 = {AB}^2 + {AC}^2 }

 \longmapsto\orange{\rm {BC}^2 = {4}^2 + {4}^2 }

 \longmapsto\orange{\rm {BC}^2 = 16 + 16}

 \longmapsto\orange{\rm {BC}^2 = 32}

 \longmapsto\orange{\rm BC =  \sqrt{32} cm}

 \longmapsto\orange{\rm BC =  \sqrt{16 \times 2} cm}

 \longmapsto\orange{\rm BC =  4\sqrt{2} cm}

Now, take BC as base and AO as a height

So, again using

\boxed{\blue{\rm Area \: of \: triangle =  \dfrac{1}{2}  \times b \times h}}

where,

  • b = BC = 42cm
  • Area of triangle = 8cm²

So,

 \dashrightarrow\pink{\rm Area \: of \: triangle =  \dfrac{1}{2}  \times b \times h}

 \dashrightarrow\pink{\rm 8 =  \dfrac{1}{2}  \times 4 \sqrt{2}  \times AO}

 \dashrightarrow\pink{\rm 8 =  \dfrac{4 \sqrt{2}}{2}  \times AO}

 \dashrightarrow\pink{\rm 8 = 2\sqrt{2}  \times AO}

 \dashrightarrow\pink{\rm   \dfrac{8}{2\sqrt{2}}  =  AO}

 \dashrightarrow\pink{\rm AO =  \dfrac{4}{\sqrt{2}} }

\qquad Rationalise the denominator

 \dashrightarrow\pink{\rm AO =  \dfrac{4}{\sqrt{2}} \times  \dfrac{ \sqrt{2} }{ \sqrt{2} } }

 \dashrightarrow\pink{\rm AO =  \dfrac{4 \sqrt{2} }{2}cm}

 \dashrightarrow\pink{\rm AO =  2 \sqrt{2}cm}

Hence, length of perpendicular A to BC is 2√2cm

Similar questions