ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig.
7.32). Show that
(i) ABE ACF
(ii) AB = AC, i.e., ABC is an isosceles triangle?
Answers
Answer:
Step-by-step explanation:
Congruence of triangles:
Two ∆’s are congruent if sides and angles of a triangle are equal to the corresponding sides and angles of the other ∆.
In Congruent Triangles corresponding parts are always equal and we write it in short CPCT i e, corresponding parts of Congruent Triangles.
It is necessary to write a correspondence of vertices correctly for writing the congruence of triangles in symbolic form.
Criteria for congruence of triangles:
There are 4 criteria for congruence of triangles.
Here we use ASA Congruence.
ASA(angle side angle):
Two Triangles are congruent if two angles and the included side of One triangle are equal to two angles & the included side of the other trian gle.
____________________________________________________________________
Given:
ΔABC in which BE perpendicular to AC & CF perpendicular to AB, such that BE=CF.
To Prove:
i) ΔABE ≅ ΔACF
ii) AB=AC
Proof:
(i) In ΔABE & ΔACF,
∠A = ∠A (Common)
∠AEB = ∠AFC (each 90°)
BE = CF (Given)
Therefore, ΔABE ≅ ΔACF (by ASA congruence rule)
(ii) since ΔABE ≅ ΔACF
Thus, AB = AC (by CPCT)
Therefore ∆ABC is an isosceles triangle.
___________________________________________________________________
Hope it helped you