ABC is a triangle, PQ is the line segment intersecting AB in P and AC in Q such that?
Answers
Answered by
10
Answer:
u should ask ur question completely mate
Step-by-step explanation:
refer the attachment for the answer.....i hope this will help you ✌✌✌
Attachments:
Answered by
1
hlo senior
hope tamanna di mil gayi hogi
Solution:-
Given : PQ is parallel to BC and PQ divides triangle ABC into two parts.To find : BP/AB
Proof : In Δ APQ Δ ABC,
∠ APQ = ∠ ABC (As PQ is parallel to BC)
∠ PAQ = ∠ BAC (Common angles)
⇒ Δ APQ ~ Δ ABC (BY AA similarity)
Therefore,
ar(Δ APQ)/ar(Δ ABC) = AP²/AB²
⇒ ar(Δ APQ)/2ar(Δ APQ) = AP²/AB²
⇒ 1/2 = AP²/AB²
⇒ AP/AB = 1/√2
⇒ (AB - BP)/AB = 1/√2
⇒ AB/AB - BP/AB = 1/√2
⇒ 1 - BP/AB = 1/√2
⇒ BP/AB = 1 - 1/√2
⇒ BP/AB = √2 - 1/√2 Answer
Similar questions