Math, asked by sunitalath29, 4 months ago

ABC is a triangle right angle at A if AB = 12 cm and Ac = 5 cm, find BC

with Full Prosser​

Answers

Answered by sohanighugul
1

Answer:

use Pythagoras theorem

Answered by Anonymous
44

Answer:

The value of \bold{\sin A=\frac{5}{13}, \ {Tan} A=\frac{5}{12}, \sin C=\frac{12}{13}, \quad \cot C=\frac{5}{13}}sinA=135, TanA=125,sinC=1312,cotC=135. \\ </p><p></p><p>Solution: \\ </p><p></p><p>The  \: triangle  \: ABC  \: is  \: drawn  \: below  \: which  \: is   \\ </p><p></p><p>In \:  the \:  triangle  \: ABC  \: angle  \: B  \: is  \: 90 \:  degree. The \:  “length \:  of  \: the  \: side  \: AB” = 12cm  \: and  \: the  \: “length \:  of  \: the  \: side \:  BC” = 5cm. \\ </p><p></p><p>Now  \: to \:  find  \: the  \: “length  \: of  \: side  \: AC”  \: we  \: use \:  Pythagoras  \: theorem  \: we  \: get  \: A B^{2}+B C^{2}=A C^{2}AB2+BC2=AC2 \\ </p><p></p><p>\sqrt{A B^{2}+B C^{2}}=A CAB2+BC2=AC \\ </p><p></p><p>=\sqrt{12^{2}+5^{2}}=122+52 \\ </p><p></p><p>=\sqrt{144+25}=13=144+25=13 \\ </p><p></p><p>Now \:  the \:  question \:  says \:  to  \: find \:  1) Sin \:  A \:  and \:  Tan  \: A,  \: 2) Sin \:  C \:  and \:  Cot  \: C. \\ </p><p></p><p>So \:  using \:  the \:  formula,  \: we  \: get \\ </p><p></p><p>\sin A=\frac{\text {height}}{\text {hypotenuse}}=\frac{B C}{A C}=\frac{5}{13}sinA=hypotenuseheight=ACBC=135 \\ </p><p></p><p>\tan A=\frac{\text {height}}{\text {base}}=\frac{B C}{A B}=\frac{5}{12}tanA=baseheight=ABBC=125 \\ </p><p></p><p>\sin C=\frac{\text {height}}{\text {hypotenuse}}=\frac{A B}{A C}=\frac{12}{13}sinC=hypotenuseheight=ACAB=1312 \\ </p><p></p><p>\cot C=\frac{\text {base}}{\text {height}}=\frac{B C}{A B}=\frac{5}{13}cotC=heightbase=ABBC=135 \\ </p><p></p><p>Therefore, the value of \sin A=\frac{5}{13}, \ {Tan} A=\frac{5}{12}, \sin C=\frac{12}{13}, \quad \cot C=\frac{5}{13}sinA=135, TanA=125,sinC=1312,cotC=135 \\ </p><p></p><p>

Similar questions