ABC is a triangle right angled at B and BD is perpendicular to AC.if AD is 4cm and CD is 5cm,find BD and AB
Answers
Answered by
194
Let AB = x, BD = y and BC = z.
From triangle ABC,
![{x}^{2} + {z}^{2} = {(4 + 5)}^{2} = 81 - - (1) {x}^{2} + {z}^{2} = {(4 + 5)}^{2} = 81 - - (1)](https://tex.z-dn.net/?f=+%7Bx%7D%5E%7B2%7D++%2B++%7Bz%7D%5E%7B2%7D++%3D++%7B%284+%2B+5%29%7D%5E%7B2%7D++%3D+81+-++-+%281%29)
From triangle ADB,
![{x}^{2} = {y}^{2} + 16 - - - (2) {x}^{2} = {y}^{2} + 16 - - - (2)](https://tex.z-dn.net/?f=+%7Bx%7D%5E%7B2%7D++%3D++%7By%7D%5E%7B2%7D++%2B+16+-++-++-+%282%29)
From triangle BDC,
![{z}^{2} = {y}^{2} + 25 - - - (3) {z}^{2} = {y}^{2} + 25 - - - (3)](https://tex.z-dn.net/?f=+%7Bz%7D%5E%7B2%7D++%3D++%7By%7D%5E%7B2%7D++%2B+25+-++-++-+%283%29)
Substituting (2) and (3) in (1),
![( {y}^{2} + 16) + ( {y}^{2} + 25) = 81 \\ {y}^{2} = 20 - - - (4) \\ y = 2 \sqrt{5} ( {y}^{2} + 16) + ( {y}^{2} + 25) = 81 \\ {y}^{2} = 20 - - - (4) \\ y = 2 \sqrt{5}](https://tex.z-dn.net/?f=%28+%7By%7D%5E%7B2%7D++%2B+16%29+%2B+%28+%7By%7D%5E%7B2%7D++%2B+25%29+%3D+81+%5C%5C++%7By%7D%5E%7B2%7D++%3D+20+-++-++-+%284%29+%5C%5C+y+%3D+2+%5Csqrt%7B5%7D+)
Substituting (4) in (2),
![{x}^{2} = 20 + 16 \\ x = 6 {x}^{2} = 20 + 16 \\ x = 6](https://tex.z-dn.net/?f=+%7Bx%7D%5E%7B2%7D++%3D+20+%2B+16+%5C%5C+x+%3D+6)
Thus BD = 2√5; AB = 6
From triangle ABC,
From triangle ADB,
From triangle BDC,
Substituting (2) and (3) in (1),
Substituting (4) in (2),
Thus BD = 2√5; AB = 6
Answered by
107
Answer:
Step-by-step explanation:
In triangle ABC & ADB
/_ A = /_A (common)
/_ABC = /_ ADB (each 90)
Therefore Triangle ABC similar to Triangle ADB
=> AB/AD = AC/AB
=> AB2= AD x AC
=> AB2= 4 x 9 (AC=AD+CD = 4+5 = 9 cm)
=> AB2= 36
=> AB = 6 cm
In Triangle ABD using Pythagoras Theorem
AB2= AD2+ BD2
62 = 42 + BD2
BD2= 36 - 16 = 20
BD = 2√5
Hope this helps you
Similar questions
CBSE BOARD XII,
9 months ago
Science,
9 months ago
Math,
9 months ago
English,
1 year ago
Chemistry,
1 year ago