Math, asked by kritikarajput7agjgs, 6 months ago

ABC is a triangle, right angled at C. If BC = 24 cm and AC = 7 cm.

Find AB​

Answers

Answered by ItzMysticalBoy
24

GIVEN :

  • ABC is right angled at C

\qquad\quad {:}\longmapsto\sf \angle {C}=90°

  • BC=24 cm
  • AC=7 cm

TO FIND :

  • AB =?

S O L U T I O N :-

Here , in triangle ABC :

  • Perpendicular(P)=AC=7 cm
  • Base (B)=BC=24 cm
  • We need to find Hypontenuse(H)= AB

According to Pythagorean theorem,

  • {\boxed{\bf H^2=P^2+B^2}}

\qquad\quad {:}\longmapsto\sf h=\sqrt {P^2+B^2}

  • Substitute the values :

\qquad\quad {:}\longmapsto\sf h=\sqrt {(7)^2+(24)^2}

\qquad\quad {:}\longmapsto\sf h=\sqrt{49+576}

\qquad\quad {:}\longmapsto\sf h=\sqrt {625}

\qquad\quad {:}\longmapsto\tt h=25\:cm

\therefore{\underline{\boxed{\bf {\overline{AB}=25\:cm.}}}}

Attachments:
Answered by Anonymous
30

GIVEN :

ABC is right angled at C

\qquad\quad {:}\longmapsto\sf \angle {C}=90°

BC=24 cm

AC=7 cm

TO FIND :

AB =?

S O L U T I O N :-

Here , in triangle ABC :

Perpendicular(P)=AC=7 cm

Base (B)=BC=24 cm

We need to find Hypontenuse(H)= AB

According to Pythagorean theorem,

{\boxed{\bf H^2=P^2+B^2}}

\qquad\quad {:}\longmapsto\sf h=\sqrt {P^2+B^2}

Substitute the values :

\qquad\quad {:}\longmapsto\sf h=\sqrt {(7)^2+(24)^2}

\qquad\quad {:}\longmapsto\sf h=\sqrt{49+576}

\qquad\quad {:}\longmapsto\sf h=\sqrt {625}

\qquad\quad {:}\longmapsto\tt h=25\:cm

\therefore{\underline{\boxed{\bf {\overline{AB}=25\:cm.}}}}

Attachments:
Similar questions