ABC is an equilateral triangle. Charges +q are placed at each corner as shown as fig. The electric intensity at centre O will be
(a) ![\frac{1}{4\pi\epsilon_{0}}\frac{q}{r} \frac{1}{4\pi\epsilon_{0}}\frac{q}{r}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_%7B0%7D%7D%5Cfrac%7Bq%7D%7Br%7D)
(b) ![\frac{1}{4\pi\epsilon_{0}}\frac{q}{r^{2}} \frac{1}{4\pi\epsilon_{0}}\frac{q}{r^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_%7B0%7D%7D%5Cfrac%7Bq%7D%7Br%5E%7B2%7D%7D)
(c) ![\frac{1}{4\pi\epsilon_{0}}\frac{3q}{r^{2}} \frac{1}{4\pi\epsilon_{0}}\frac{3q}{r^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_%7B0%7D%7D%5Cfrac%7B3q%7D%7Br%5E%7B2%7D%7D)
(d) zero
Attachments:
![](https://hi-static.z-dn.net/files/d1f/aa51e590397b0f6af618f1f5e3ec0173.jpg)
Answers
Answered by
0
I&,0,&0,66*"7'8"79,0,595×¢3•₹4£€$¢^¢, to do this but I will call you can see the end of luck the end up with a coenicidence from
Answered by
1
Answer:
Similar questions
Biology,
8 months ago
Computer Science,
8 months ago
Computer Science,
8 months ago
Physics,
1 year ago
English,
1 year ago
English,
1 year ago