ΔABC is an equilateral triangle.<br />Poiny D is on BC such that,BD =1/5 BC<br />then prove that 25AD^=21AB^
Answers
Answer:
Step-by-step explanation:
Given: In an equilateral triangle
ΔABC. The side BC is trisected at D
such that BD = (1/3) BC.
To prove: 9AD^2 = 7AB^2
Construction: Draw AE ⊥ BC.
Proof :
As height of an equilateral triangle
divides BC in equal ratio. BE = 1/2 BC
In a right angled triangle ADE
AD^2 = AE^2 + DE^2
AE^2 = AD^2 - DE^2 ---------(1)
In a right angled triangle ABE
AB^2 = AE^2 + BE^2
AE^2 = AB^2 - BE^2 ---------(2)
From equation (1) and (2) we obtain
》 AD^2 - AB^2 = DE^2 - BE^2 .
》 AD^2 - AB^2 = (BE – BD)^2 - BE^2 .
》AD^2 - AB^2 = (BC / 2 – BC/3)^2 – (BC/2)^2
》 AD^2 - AB^2 = ((3BC – 2BC)/6)^2 – (BC/2)^2
》 AD^2 - AB^2 = BC^2 / 36 – BC^2 / 4
( In a equilateral triangle ΔABC, AB = BC = CA)
》 AD^2 = AB^2 + AB^2 / 36 – AB^2 / 4
》 AD^2 = (36AB^2 + AB^2– 9AB^2) / 36
》 AD^2 = (28AB^2) / 36
》 AD^2 = (7AB^2) / 9
9AD^2 = 7AB^2