Math, asked by 0o87, 1 year ago

ABC is an equilateral triangle. X, Y, Z are point AB,BC, CA respectively such that AX= BY=CZ.prove that XYZ is also an equilateral triangle

Answers

Answered by TheBrainlyopekaa
4

\huge{\boxed{\bold{Question}}}

ABC is an equilateral triangle. X, Y, Z are point AB,BC, CA respectively such that AX= BY=CZ.prove that XYZ is also an equilateral triangle

\huge{\boxed{\bold{Answer}}}

What to do

here we have bance

L.H.S=R.H.S.

Let's solve.

 \implies \rm \:  \frac{1}{3} x  - 4 = x( \frac{1}{2}  +   \frac{x}{3} ) \\  \\  \implies \rm \:  \frac{x}{3}  - 4 = x - ( \frac{3 + 2x}{6} ) \\  \\  \implies \rm \:  \frac{x - 12}{3}  = x - ( \frac{2x + 3}{ 6} ) \\  \\  \implies \rm \:  \frac{x - 12}{3}  = x - ( \frac{2x + 3}{ 6} ) \\  \\  \implies \rm \:  \frac{x - 12}{3}  =  \frac{6x - 2x - 3}{6}  \\  \\  \implies \rm \:  \frac{x - 12}{3}  =  \frac{4x - 3}{6}  \\  \\

Cancelling 6 (R.H.S) by 3 from L.H.S

 \ \longmapsto \sf \:  \frac{x - 12}{1}  =  \frac{4x - 3}{2}  \\  \\  \longmapsto\sf2( x - 12) = 4x - 3 \\  \\  \longmapsto \sf \:  - 24 + 3 = 4x - 2x \\  \\  \longmapsto \sf \:  - 21 = 2x \\  \\   \longmapsto \sf \bold{x =  \frac{ - 21}{2} } \\  \\

Let's Prove this answer

 \leadsto \tt \:  \frac{  \frac{ - 21}{2} }{3}  - 4 =  \frac{ - 21}{2}  - ( \frac{1}{2}  + ( - ) \frac{ \frac{21}{2} }{3}  \\  \\  \leadsto \tt \:  \frac{ - 21}{6}  - 4 =  \frac{ - 21}{2}  - ( \frac{1}{2}  -  \frac{21}{6} ) \\  \\  \leadsto \tt \frac{ - 7}{2} - 4 =  \frac{21}{2}   - ( \frac{1}{2}  -  \frac{7}{2} ) \\  \\  \leadsto \tt \:  \frac{ - 7 - 8}{2}  =  \frac{ - 21}{2} ( \frac{ - 6}{2} ) \\  \\  \leadsto \tt \: -   \frac{ 15}{2}  =  \frac{21}{2}  - ( - 3) \\  \\  \leadsto \tt \:   - \frac{15}{2}  =  \frac{ - 21 + 6}{2}  =  -  \frac{15}{2}

Therefore ,L.H.S=R.H.S

CHECKED

Similar questions