ABC is an isoceles triangle, right angled at C, prove that AB square=2AC square
Answers
Step-by-step explanation:
Mark me the branliest plsss please mark me the branliest plsss please mark me the branliest plsss please mark me the branliest plsss please mark me the branliest plsss
follow me
Answer:
Given data :
Δ ABC is a right Δ and also isosceles triangle.,
To prove:
\mathrm{AB}^{2}=2 \mathrm{AC}^{2}AB
2
=2AC
2
Step 1:
Proof:
Here,
Hypotenuse = AB
Also, as it is given that, ΔABC is isosceles,
Step 2:
AC = BC [equal sides of isosceles Δ]
Using Pythagoras theorem,
Step 3:
In Δ ABC, we have ;
\begin{gathered}\begin{array}{l}{\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}} \\ {\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{AC}^{2}}\end{array}\end{gathered}
AB
2
=AC
2
+BC
2
AB
2
=AC
2
+AC
2
[AC = BC]
\mathrm{AB}^{2}=2 \mathrm{AC}^{2}
Hence proved