Math, asked by singhbander01, 6 months ago

ABC is an isosceles triangle in which AB = AC . find the value of x in each case​

Attachments:

Answers

Answered by AshutoshPriyadarshan
8

Answer:

x=45°

Step-by-step explanation:

Here, <A = 90° (Right angle)

Here, AB = AC (Given)

So, <B = <C = x

We know that sum of interior angles of a triangle is 180°.

So, <A+<B+<C = 180°

=> 90°+x+x = 180°

=> 2x = 90°

=> x = 45°

Mark As Brainliest

Answered by MяMαgıcıαη
73

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{ \bold { \underline{\large{Correct \:  Question :  - }}}} \:

ABC is an isosceles triangle in which AB = AC and ∠BAC = 90° find the value of x in each case.

{ \bold { \underline{\large{Given :  - }}}} \:

\sf{\triangle{ABC}\: in\: which\: AB \:= \:AC}

\sf{\angle{BAC}\: = \:90\degree}

{ \bold { \underline{\large{To \:  Find :  - }}}} \:

\sf{Value\:of\:x}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\boxed{\boxed{\tt{So\:let's \:do\:it\::-}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{ \bold { \underline{\large{Solution :  - }}}} \:

Let ABC = y and BAC = z !

Angle opposite to equal sides are equal.

x = y

Now,

\sf{\red \dag \underbrace{Sum\:of\:all\:angles\:of\:triangle\:=\:180\degree}}\red\dag

ㅤㅤㅤㅤ\sf{x\:+\:y\:+\:z\:=\:180\degree}

We know, x = y . So, we can add them.

ㅤㅤㅤㅤ\sf{2x\:+\:90\degree\:=\:180\degree}

ㅤㅤㅤㅤ\sf{2x\:=\:180\degree\:-\:90\degree}

ㅤㅤㅤㅤ\sf{2x\:=\:90\degree}

ㅤㅤㅤㅤ\sf{x\:=\:\dfrac{90\degree}{2}}

ㅤㅤㅤㅤ\sf{x\:=\:45\degree}

\boxed {\frak {\therefore \purple {\angle{ACB}\:=\:\angle{ABC}\:=\:45\degree}}}\:\orange\bigstar

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\sf{\red \dag \underbrace{Verification}}\red\dag

\sf{\angle{ABC}\:+\:\angle{ACB}\:+\:\angle{BAC}\:=\:180\degree}

\sf{45\degree\:+\:45\degree\:+\:90\degree\:=\:180\degree}

\sf{90\degree\:+\:90\degree\:=\:180\degree}

\sf{180\degree\:=\:180\degree}

\boxed {\frak  \purple {Hence\:verified}}\:\orange\bigstar

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{ \bold { \underline{\large \red {Note :  - }}}} \:

\sf{Diagram\: is\: in\: the \:attachment!}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:

Anonymous: Amazing!
Similar questions