Math, asked by pratheekshak14, 1 year ago

∆ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such
that AD = AB. Show that ∠BCD = 90°.

Answers

Answered by Akv2
23
By theorem,
we know that,
Angle opposite to equal sides are also equal.

Let <ACB = x
then,

<ABC + <ACB + <BAC = 180° (Angle sum property)

x + x + <BAC = 180°

2x = 180 - <BAC

[x = (180 - <BAC)/2] _____ (1)

&

Let <ACD = y
then,

<ACD + <ADC + <CAD = 180° (Angle sum property)

y + y + <CAD = 180°

2y = 180 - <CAD

[y = (180 - <CAD)/2] _____ (2)

Now,
Joining x & y,

x =  \frac{(180  -  &lt; bac)}{2}  \\ \\  y =  \frac{(180 -  &lt; cad)}{2} \\   \\ now.joining.  \\ \\ x + y =  \frac{(180 -  &lt; bac)}{2}  +  \frac{(180 -  &lt; cad)}{2} \\   \\ x + y =  \frac{180 -  &lt; bac + 180 -  &lt; cad}{2}  \\ \\ x + y =  \frac{360 - ( &lt; bac + cad)}{2}  \\  \\  by \: figure \: we \: can \: see \: that..  \\ \\  &lt; bac +  &lt; cad = 180 \: (linear \: pair) \\  \\ now.putting \: values. \\  \\ we \: have.  \\ \\ x + y =  \frac{360 - 180}{2}   \\ \\ x + y =  \frac{180}{2}   \\ \\ x + y = 90 \: .......... \: (1) \\  \\  x + y =  &lt; bcd \\  \\ we \: can \: replace \: eqn. \: (1) \: with \:  &lt; bcd \\  \\ now. \\  \\  ((&lt; bcd  = 90))


Hence proved..

♦PLZ MARK IT AS BRAINLIEST ANSWER AND DROP A ♥
Attachments:

pratheekshak14: Thanks
Answered by Anonymous
8

Hello mate ^_^

__________________________/\_

\bold\pink{Solution:}

AB=AC         (Given)

It means that ∠DBC=∠ACB           (In triangle, angles opposite to equal sides are equal)     

Let ∠DBC=∠ACB=x         .......(1)

AC=AD          (Given)

It means that ∠ACD=∠BDC         (In triangle, angles opposite to equal sides are equal)     

Let ∠ACD=∠BDC=y           ......(2)

In ∆BDC, we have

∠BDC+∠BCD+∠DBC=180°     (Angle sum property of triangle)

⇒∠BDC+∠ACB+∠ACD+∠DBC=180°

Putting (1) and (2) in the above equation, we get

y+x+y+x=180°

⇒2x+2y=180°

⇒2(x+y)=180°

⇒(x+y)=180/2=90°

Therefore, ∠BCD=90°

hope, this will help you.☺

Thank you______❤

_____________________________❤

Attachments:
Similar questions