Math, asked by llAngelicCutiell, 4 months ago

∆ABC is an isosceles triangle with AB = AC.side BA is produced to D such that AB = AD. prove that ∠BCD is a right angle.​

Answers

Answered by KhAdiJAh2008
1

HOPE IT HELPS PLEASE MARK IT AS BRAINLIEST ANSWER AND FOLLOW ME FOR BEST ANSWERS !!!

Attachments:
Answered by llAloneSameerll
13

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\orange{</p><p>Question:-}}}}}

∆ABC is an isosceles triangle with AB = AC.side BA is produced to D such that AB = AD. prove that ∠BCD is a right angle.

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\orange{</p><p>Solution:-}}}}}

{\blue{\sf\underline{Given}}}

A ∆ABC in which AB = AC and side BA is produced to D such that AB = AD.

{\red{\sf\underline{To\:Prove}}}

∠BCD = 90° .

{\pink{\sf\underline{Construction}}}

produce BA to D such that BA = AD .

Join DC.

{\green{\sf\underline{proof}}}

ab \:  = AC \: and \: AB = AD \:  ⇒ AD \:  = AC \\ now \: AB \:  = AC ⇒ \angle \: ABC = \angle \: ACB \\ AD = AC ⇒ \angle \: ADC = \angle \: ACD. \\ \therefore \: \angle \: Abc + \angle \: ADC  = \angle \: ACB  + \angle \: ACD. \\  ⇒ \angle \: ABC + \angle \: ADC = \angle \: BCD \:  \:  \:  \: (\angle \: ACB + \angle \: ACD = \angle \: BCD) \\  ⇒ \angle \: ABC + \angle \: ADC + \angle \: BCD = 2\angle \: BCD \\  \:  \:  \:  \:  \:  \:  \: (adding \: \angle \: BCD \: on \: both \: sides) \\  ⇒ 2\angle \: BCD = 180\degree \:  \:  \: (\therefore\: sum \: of \: the \: \triangle \: BCD \:  \: is \: 180\degree) \\  ⇒ \angle \: BCD = 90\degree.

Hence,∠BCD is a right angle.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions