ABC is an isosceles triangle with vertices A(2,0), B(2,5)and C(x,y). find C(x,y) when AC and BC are equal sides of length 3 cm.
Answers
Given:-
△ABC is an Isosceles triangle.
B(2,5), A(2,0), C(x, y)
AC = BC = 3cm
To find:-
coordinates of point C(x, y) = ?
Solution:-
As triangle is Isosceles.
•°• AC = BC
- By distance formula
√((x - 2)² + (y - 0)²) = √((x - 2)² + (y - 5)²)
(x - 2)² + (y - 0)² = (x - 2)² + (y - 5)²
(y - 0)² = y² - 10y + 25
y² = y² - 10y + 25
0 = -10y + 25
10y = 25
y = 25/10 = 5/2
y = 5/2 ........(1)
Now, By distance formula
AB = 3cm
•°• 3 = √((x - 2)² + (y - 0)²)
9 = (x - 2)² + (5/2)²
9 = (x - 2)² + 25/4
9 - 25/4 = (x - 2)²
(36 - 25)/4 = (x - 2)²
11/4 = (x - 2)²
x - 2 = √(11/4)
x - 2 = √11/2
x = √11/2 + 2
x = (√11 + 4)/2
- Answer
C(x, y) = ((√11 + 4)/2, 5/2) = (3.65, 2.5)