abc is inscribed in a circle . the bisector of angle a meets the circle in l and the bisector of angle c bisects al at k . if angle acb =60. find angle lck
Answers
Answered by
1
Answer:
Given△ABCisinscribedinC(0,r).
Thebisectorsof∠BAC,∠ABCand∠ACBmeetsthecircumcircle
of△ABC,inP,Q,Rrespectively.
InthefigureJoinRQ,
∠ABQ=∠APQ−(i)
{Anglesinthesamesegmentofacircleareequal}.
∠ABQ=∠QBC{BQisthebisectorof∠ABC}.
∴∠QBC=∠APQ−(ii)
Adding(i)&(ii)
∠ABQ+∠QBC=∠APQ+∠APQ
∴∠ABC=2∠APQ−(iii)
Similarily,∠ACB=2∠APR−(iv)
Adding(iii)&(iv)
∠ABC+∠ACB=2(∠APQ+∠APR)
∴∠ABC+∠ACB=2∠QPR−(v)
In△ABC,
∠ABC+∠BAC+∠ACB=180∘{Anglesumproperty}
kaur03641:
May be the statement is same but if the statement is not same use this method and solve the sum
Similar questions