Math, asked by pshailendra487, 11 months ago

ABC is right angled at B. AB = 3 cm and BC = 4 cm. Then, length of AC will be? ​

Answers

Answered by Anonymous
111

AnswEr :

\:\bullet\:\sf\ AB = 3cm

\:\bullet\:\sf\ BC = 4cm

\underline{\dag\:\textsf{Let's \: head \: to \: the question \: now:}}

\normalsize\star{\boxed{\sf{Pythagorus \: Th^{m} : H^2 = P^2 + B^2 }}}

\:\bullet\:\sf\ H = Hypotenuse

\:\bullet\:\sf\ P = Perpendicular

\:\bullet\:\sf\ B = Base

 \rule{100}{1}

\normalsize\sf\ In \: right \triangle ABC :-

\normalsize\ : \implies\sf\ (AC)^{2} = (AB)^{2} + (BC)^{2} \\ \\ \normalsize\ : \implies\sf\ (AC)^{2} = (3)^{2} + (4)^{2} \\ \\ \normalsize\ : \implies\sf\ (AC)^{2} = 9 + 16 \\ \\ \normalsize\ : \implies\sf\ (AC)^{2} = 25 \\ \\ \normalsize\ : \implies\sf\ AC = \sqrt{25} = 5

\normalsize\ : \implies{\underline{\boxed{\sf \purple{Length \: of \: AC \: is \: 5cm}}}}

Answered by dplincsv
31

Step-by-step explanation:

Given,

ABC is a right angled triangle. It is right angled at B. AB = 3cm and BC = 4cm

To find:

Length of AC

Answer: 5cm = AC

Solution:

Refer to the image first.

Angle B = 90°

H= Hypotenuse

P= Perpendicular

B= Base

By Pythagoras Thereom,

H² = P² + B²

Here, H = AC

B = BC

P = AB

So, AC² = AB² + BC²

AC² = 3² + 4²

AC² = 9+16

AC² = 25 cm

AC = √25 cm

AC = 5 cm.

Therefore, the length of AC = 5cm.

Attachments:
Similar questions