Math, asked by nitawaingankar, 5 months ago

ABC is right angled triangle in which ∠A=90 , AB=AC find ∠B and ∠C .

Answers

Answered by priyankasapkale242
1

Answer:

ANSWER

Since AB=AC, 

So, △ABC is Right-angled isosceles.

∠B=∠C             ...(angles opp. to equal sides are equal)

∠A+∠B+∠C=180∘       ...(angle - sum property of a triangle)

Substituting ∠B=∠C, ∠A=90o

90∘+2∠B=180∘ 

2∠B=180∘–90∘=90∘

⇒∠B=45∘

So, ∠C=∠B=45o.

plz mark me brainliest

Answered by TheMist
52

\huge \sf \color{Blue}\underline{\underline{Question}}

ABC is right angled triangle in which ∠A=90 , AB=AC find ∠B and ∠C .

\huge \sf \color{Blue}\underline{\underline{Answer :}}

∠B =∠C = 45°

\huge \sf \color{Blue}\underline{\underline{Solution :}}

\large \sf \color{Green}\underline{\underline{Given:}}

∠A= 90°

AC=AB

Hence, ∠B =∠C ( Opposite side are equal)

we know that ,

 \sf \color{red} \sf{\boxed{Sum\ of \ 3\ sides \ of \triangle =180°}}

∠A+∠B+∠C =180°

∠B =∠C ( Opposite side are equal)(AC=AB)

➩∠A+∠B+∠B =180° (∠B =∠C )

➩90° + 2∠B =180°

➩2∠B= 90°

➩∠B = 45°

∠C = 45° ( ∠B =∠C )

Similar questions